Research Article

SELECTION OF MIXED SAMPLING PLAN WITH TNT - (n; c₁, c₂) PLAN AS ATTRIBUTE PLAN INDEXED THROUGH MAPD AND LQL

R. Sampath Kumar¹, M. Indra² and R. Radhakrishnan³

¹Department of Statistics, Government Arts College, Coimbatore - 641018
²Department of Statistics, Muthayammal College of Arts & Science, Rasipuram - 637408
³Department of Statistics, PSG College of Arts & Science, Coimbatore - 641014
*Author for Correspondence

ABSTRACT

This paper presents the procedure for the construction and selection of the mixed sampling plan using MAPD as a quality standard with TNT - $(n; c_1, c_2)$ plan as attribute plan. The plans indexed through MAPD and LQL are constructed and compared for their efficiency. Tables are constructed for easy selection of the plan.

Key words and Phrases: limiting quality level, maximum allowable percent defective, operating characteristic, tangent intercept.

AMS (2000) Subject Classification Number: Primary: 62P30 Secondary: 62D05

INTRODUCTION

Mixed sampling plans consist of two stages of different nature. During the first stage the given lot is considered as a sample from the respective production process and a criterion by variables are used to check process quality. If process quality is judged to be sufficiently good, the lot is accepted. Otherwise, the second stage of the sampling plan is entered and lot quality is checked directly by means of an attribute sampling plan.

There are two types of mixed sampling plans called independent and dependent plans. If the first stage sample results are not utilized in the second stage, the plan is said to be independent otherwise dependent. The principal advantage of a mixed sampling plan over pure attribute sampling plans is a reduction in sample size for a similar amount of protection.

Schilling (1967) has given a method for determining the operating characteristics for mixed variables-attributes sampling plans (single sided specifications, standard deviation known). Later Adams and Lamberson (1975) developed a modified combined attribute plan. Adams and Mirkhani (1976) developed mixed plans for the case of unknown standard deviation. Robert Elder and David Muse (1982) provided an approximate method for evaluating attribute mixed plans. Devaarul (2003), Radhakrishnan and Sampath Kumar (2006a, 2006b, 2007a, 2007b, 2007c, 2009) have made contributions to mixed sampling plans for independent case. Radhakrishnan, Sampath Kumar and Saravanan (2009) studied mixed sampling plan for dependent case.

In this paper, using the operating procedure of mixed sampling plan (independent case) with Tightened – Normal – Tightened plan of the type TNT - (n;c₁,c₂) plan as attribute plan, tables are constructed for the mixed sampling plan indexed through (i) MAPD (ii) LQL(limiting quality level). The plan indexed through MAPD is compared with the plan indexed through LQL. Suitable suggestions are also provided for future research.

GLOSSORY OF SYMBOLS

The symbols used in this paper are as follows:

p : submitted quality of lot or process

P_a(p): probability of acceptance for given quality 'p'

p₂: the submitted quality such that $P_a(p_2) = 0.10$ (also called LQL)

p* : maximum allowable percent defective (MAPD)

h* : relative slope at p*

P₁: Probability of acceptance under tightened inspection

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm 2012 Vol. 2 (1) January-March, pp38-44/Upadhyay and Shanker

Research Article

P₂: Probability of acceptance under normal inspection

 $n_{1,1}$: sample size for variable sampling plan

 $n_{1,2}$: tightened (larger) sample size for attribute sampling plan

 $n_{2,2}$: normal (smaller) sample size for attribute sampling plan

: criterion for switching to tightened inspection

: criterion for switching to normal inspection

: probability of acceptance for lot quality p_i

: probability of acceptance assigned to first stage for percent defective p_i

 β_i ": probability of acceptance assigned to second stage for percent defective p_i

z (j): 'z' value for the jth ordered observation

k : variable factor such that a lot is accepted if $\bar{X} \leq A = U - k\sigma$

OPERATING PROCEDURE OF MIXED SAMPLING PLAN WITH TNT-(n; c1, c2) AS ATTRIBUTE PLAN

In this paper, independent mixed sampling plans are considered. The development of mixed sampling plans and the subsequent discussions are limited only to the upper specification limit U. By symmetry a parallel discussion can be made use for lower specification limits. It is suggested that the mixed sampling plan with TNT-($n;c_1,c_2$) in the case of single sided specification (U), S.D (σ) known can be formulated by the parameters n_{1, 2}, n_{2, 2}, s and t. While giving the values for the parameters an independent plan for single sided specification, σ known would be carried out as follows:

- 1. Determine the parameters of the mixed sampling plan $n_{1,2}$, $n_{2,2}$, s and t.
- Take a random sample of size $n_{1,1}$ from the lot assumed to be large.
- 3. If a sample average $\overline{X} \leq A = U k\sigma$, accept the lot.

If the sample average $\overline{X} > A = U - k\sigma$, take another sample of size $n_{1/2}$

- (i) Inspect using tightened inspection with a larger sample size n_{1,2} and acceptance number c₁
- (ii) Switch to normal inspection when 't' lots in a row are accepted under tightened inspection.
- (iii) Inspect using normal inspection with smaller sample size n_{2,2} and acceptance number c_2 (> c_1).
- (iv)Switch to tightened inspection after a rejection if an additional lot is rejected in the next 's' lots.

When σ is not known, simply substitute the sample standard deviation (s_1) where

$$s_1 = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$
 for σ in the known standard deviation procedure by choosing an appropriate value of 'k' and sample size 'n' for the unknown standard deviation case.

of 'k' and sample size 'n' for the unknown standard deviation case.

The operation of mixed plans can be assessed if the formula for the ordinates is clearly defined for the known percent defectives. The following formula can be used in determining the operating characteristic curve and associated measures of performance of an independent mixed plan. The probability of acceptance of a lot is

$$P_{a}(p) = P_{n_{1,2}}(\overline{X} \le A) + P_{n_{1,2}}(\overline{X} > A) \sum_{j=0}^{c} P(j; n_{2,2})$$
 (1)

CONSTRUCTION OF MIXED SAMPLING PLAN HAVING TNT-(n;c1,c2) AS ATTRIBUTE PLAN INDEXED THROUGH THE GIVEN POINT ON THE OC CURVE

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp38-44/Upadhyay and Shanker

Research Article

The modified procedure for the construction of mixed variables – attributes sampling plans is provided by Schilling (1967) for a given ' $n_{1,1}$ ' and a point ' p_i ' on the OC curve is given below.

- Assume that the mixed sampling plan is independent
- Split the probability of acceptance (β_j) determining the probability of acceptance that will be assigned to the first stage. Let it be β_i '.
- lack Decide the sample size $n_{1,1}$ (for variable sampling plan) to be used
- Calculate the acceptance limit for the variable sampling plan as

A = U - k
$$\sigma$$
 = U - [z (p_j) + {z (β_j')/ $\sqrt{n_{1,1}}$ }] σ , where z (t) is the standard

normal variate corresponding to 't' such that
$$t = \int_{z(t)}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

- lack Determine the sample average \overline{X} . If a sample average $\overline{X} > A = U k \sigma$, take a second stage sample of size ' $n_{2,2}$ ' using attribute sampling plan.
- $\bullet \qquad \text{Split the probability of acceptance β_* as β_*' and β_*'' , β_j as β_j' and β_j'' such that }$

$$\beta_* = \beta_*' + (1 - \beta_*')\beta_*''$$
 and $\beta_j = \beta_j' + (1 - \beta_j')\beta_j''$ where β_*' and β_j' are the probability

of acceptance assigned to the attribute sampling plan. Fix the values of β_* ' and β_i '.

- Determine β*" and β_j" as β*" = $(\beta_* \beta_*') / (1-\beta_*')$ and β_j " = $(\beta_j \beta_j') / (1-\beta_j')$
- Determine the appropriate second stage sample of size ' $n_{2,2}$ ' from (sample size for the attribute plan Pa (p) = β_* " for p = p_* and Pa (p) = β_j " for p = p_j .

Using the above procedure tables can be constructed to facilitate easy selection of mixed sampling plan with TNT- $(n;c_1,c_2)$ plan as attribute plan indexed through MAPD (p_*) or LQL (p_2) .

According to Calvin (1977), the OC function of a TNT scheme is given by

Pa (p) =
$$\frac{P_1(1 - P_2^s)(1 - P_1^t)(1 - P_2) + P_2P_1^t(1 - P_1)(2 - P_2^s)}{(1 - P_2^s)(1 - P_1^t)(1 - P_2) + P_1^t(1 - P_1)(2 - P_2^s)}$$
(2)

Where P_1 = Probability of acceptance under tightened inspection

 P_2 = Probability of acceptance under normal inspection

s = criteria for switching to tightened inspection

and t = Criteria for switching to normal inspection

Based on the conditions of the application of the Poisson model, when $c_1 = 0$ the probability of acceptance under tightened inspection becomes

$$P_1 = e^{-n_{1,2} p} (3)$$

When $c_2 = 1$, the probability of acceptance under normal inspection becomes

$$P_2 = (1+np) e^{-n_{2,2}p}$$
 (4)

Since $n_{1, 2} > n_{2, 2}$, we set $n_{1, 2}$ equal to some multiple of $n_{2, 2}$ say, $mn_{2, 2}$. The tables furnished in this paper are for the case when m = 2. Suresh and Balamurali (1996) have constructed TNT-(n; c_1 , c_2) plan indexed through MAPD. The paper aims at giving tables and procedures for the selection of the TNT-(n; c_1 , c_2) scheme when $c_1 = 0$ and $c_2 = 1$ indexed by MAPD and is compared with the TNT-(n; c_1 , c_2) scheme indexed by LQL.

CONSTRUCTION OF THE PLANS INDEXED THROUGH MAPD

MAPD, introduced by Mayer (1967) and studied by Soundararajan (1975) is the quality level corresponding to the inflection point of the OC curve. The degree of sharpness of nspection about this quality level p* is measured by pt, the point at which the tangent to the OC curve at the inflection point cuts the proportion defective axis. For designing, Soundararajan (1975) proposed a selection procedure

for single sampling plan indexed with MAPD and $R = \frac{p_{t}}{r}$.

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp38-44/Upadhyay and Shanker

Research Article

Using the expressions (2) and (3) in the expression (1) we get the plan which is called as TNT-(n; c₁, c₂) plan and the inflection point (p*) is obtained by using $\frac{d^2 p_a(p)}{dp^2} = 0$ and $\frac{d^3 p_a(p)}{dp^3} \neq 0$. The

relative slope of the OC curve $h_* = \left[\frac{-p}{Pa(p)}\right] \frac{dPa(p)}{dp}$ at $p = p_*$. The inflection tangent of the OC curve

cuts the p axis at $p_t = p_* + (p_*/h_*)$. The values of $n_{2, 2}p_*$, h_* ,

 $n_{2, 2}p_t$ and $R = \frac{p_t}{p_*}$ are calculated for different values of s and t and for $\beta_*' = 0.04$ using visual basic

program and presented in Table 1.

Selection of the Plan

Table 1 can be used to select the values of $n_{2,2}$, s and t for a given p_* and tangent intercept p_t or $\beta_*' = 0.04$.

For example, if $p_* = 0.024$ and $p_t = 0.046$ find the ratio $R = \frac{p_t}{p_*} = 1.9167$ and select the nearest value of R

from Table 1 as R = 1.9620 which is associated with s = 2 and t = 4. For the values of $p_* = 0.024$, s = 2 and t = 4, from Table 1, the second stage sample size $n_{2,2} =$

 $\frac{n_{2,2}p_*}{p_*} = \frac{0.6930}{0.024} = 29$. This sample size is the normal plan sample size. The tightened plan sample size

 $n_{1,\,2}$ is determined as $n_{1,\,2}=2n_{2,\,2}=58$. Thus $n_{1,\,2}=58$, $n_{2,\,2}=29$, s=2 and t=4 are the parameters selected for the mixed sampling plan having TNT-(n; c_1 , c_2) as attribute plan for a specified $p_*=0.024$ and $p_t=0.046$.

Practical application

In a Mobile manufacturing company, for a specified lot quality $p_t = 0.046$ (46 non conformities out of thousand mobiles), $p_* = 0.024$ (24 non conformities out of thousand mobiles), if the sample average $\overline{X} > A = U - k\sigma$ (for a known $U, k \& \sigma$), take a sample of size 58 ($n_{1,2}$) under Tightened inspection with $c_1 = 0$ and if t = 4 lots in a row are accepted, switch to Normal inspection with a smaller sample size $n_{2,2} = 29$ with $c_2 = 1$ and then switch to Tightened inspection after a rejection if an additional lot is rejected in the next s = 2 lots.

CONSTRUCTION OF MIXED SAMPLING PLAN WITH TNT-(n; $\mathbf{c}_1,\,\mathbf{c}_2)$ AS ATTRIBUTE PLAN INDEXED THROUGH LQL

The procedure given in Section 4 is used for constructing the mixed sampling plan having TNT-(n;c₁,c₂) as attribute plan indexed through LQL(p_2). By assuming the probability of acceptance of the lot be β_2 = 0.10 and β_2 ' = 0.04 for IQL, the n_{2,2}p₂ values are calculated for different values of 's' and 't' using visual basic program and is presented in Table 1.

Selection of the Plan for a given LQL, s and t

Table 1 is used to construct the plans when LQL (p_2), s and t are given. For any given values of p_2 , s and t one can determine $n_{2,2}$ value using $n_{2,2} = \frac{n_{2,2} p_2}{p_2}$ and $n_{1,2} = 2n_{2,2}$.

Example: Let the probability of acceptance of the lot be $\beta_2 = 0.10$ and $\beta_2' = 0.04$. For the given values of $p_2 = 0.02$, s = 3 and t = 7 from Table 1, the second stage sample size $n_{2, 2} = \frac{n_{2, 2} p_2}{p_2} = \frac{2.7730}{0.02} = 139$ and

 $n_{1,\,2}=2n_{2,\,2}=278$. Thus $n_{1,\,2}=278$, $n_{2,\,2}=139$, s=3 and t=7 are the parameters selected for the mixed sampling plan having TNT-(n; c_1 , c_2) as attribute plan for a specified $p_2=0.02$, s=3 and t=7.

Research Article

Table1: Various characteristics of the mixed sampling plan when β_* '= β_2 '= 0.04 and β_2 = 0.10

S	t	$n_{2,2}p_2$	β _* ''	$\mathbf{n}_{2,2}\mathbf{p}_*$	h _*	$n_{2,2}\mathbf{p}_{t}$	$\mathbf{R} = \mathbf{p_t} / \mathbf{p_*}$
	-	·	-	,		,	
1	2	2.8020	0.5889	1.0210	1.2558	1.8340	1.7963
1	3	2.7750	0.6190	0.8690	1.2566	1.5605	1.7957
1	4	2.7730	0.6492	0.7570	1.2103	1.3825	1.8263
1	5	2.7730	0.6757	0.6740	1.1583	1.2559	1.8634
1	6	2.7730	0.6985	0.6090	1.1050	1.1601	1.9049
2	3	2.7750	0.6073	0.7940	1.1018	1.5146	1.9076
2	4	2.7730	0.6293	0.6930	1.0394	1.3597	1.9620
2	5	2.7730	0.6496	0.6180	0.9731	1.2531	2.0277
2	6	2.7730	0.6676	0.5600	0.9106	1.1750	2.0982
2	7	2.7730	0.6836	0.5140	0.8543	1.1157	2.1706
3	4	2.7730	0.6454	0.6600	0.9560	1.3504	2.0461
3	5	2.7730	0.6643	0.5880	0.8938	1.2459	2.1189
3	6	2.7730	0.6811	0.5330	0.8363	1.1703	2.1957
3	7	2.7730	0.6960	0.4890	0.7837	1.1130	2.2761
3	8	2.7730	0.7094	0.4530	0.7365	1.0681	2.3578
4	5	2.7730	0.6775	0.5690	0.8475	1.2404	2.1800
4	6	2.7730	0.6936	0.5150	0.7930	1.1644	2.2610
4	7	2.7730	0.7078	0.4730	0.7450	1.1079	2.3423
4	8	2.7730	0.7203	0.4380	0.7007	1.0631	2.4272
4	9	2.7730	0.7317	0.4090	0.6611	1.0277	2.5127
5	6	2.7730	0.7040	0.5030	0.7647	1.1608	2.3078
5	7	2.7730	0.7176	0.4610	0.7181	1.1030	2.3926
5	8	2.7730	0.7297	0.4270	0.6765	1.0582	2.4782
5	9	2.7730	0.7404	0.3980	0.6383	1.0215	2.5666
5	10	2.7730	0.7501	0.3740	0.6047	0.9925	2.6537

COMPARISON OF TNT-(n; c1, c2) INDEXED THROUGH MAPD AND LQL.

In this section TNT-(n; c_1 , c_2) plan indexed through MAPD is compared with TNT-(n; c_1 , c_2) plan indexed through LQL by fixing the parameters (s,t) and the assumption β_j '.

For a given values of p_* and p_t with the assumption $\beta_*' = 0.04$ one can find the values of s, t and $n_{2,\,2}$ indexed through MAPD. By fixing the values of s and t, find the value of p_2 by equating Pa (p) = β_2 = 0.10. Using $\beta_2' = 0.04$, s and p_2 one can find the value of $n_{2,\,2}$ using $n_{2,\,2} = \frac{n_{2,\,2}\,p_2}{p_2}$ from Table 1. For

different combinations of p_* , p_t , s and t the values of $n_{1,2}$, $n_{2,2}$ (indexed through MAPD) and $n_{1,2}$, $n_{2,2}$ (indexed through LQL) are calculated and presented in Table 2.

Research Article

Table 2:	Comparison	n of plans	s indexed	through	MAPD	and LOL

sp*	p _t	s	t	INDEXED THROUGH MAPD		INDEXED THROUGH LQL	
_				$n_{1,2}$	$\mathbf{n}_{2,2}$	$n_{1,2}$	$\mathbf{n}_{2,2}$
0.006*	0.013	2	7	172	86	206	103
0.008	0.017	3	5	148	74	178	89
0.012	0.029	4	8	74	37	90	45
0.0017	0.042	5	8	50	25	60	30

^{*}OC curve is drawn

Construction of OC curve

The OC curves for the plan $n_{2,2} = 86$, s = 2, t = 7, $c_1 = 0$, $c_2 = 1$ (indexed through MAPD) and $n_{2,2} = 103$, s = 2, t = 7, $c_1 = 0$, $c_2 = 1$ (indexed through LQL) based on the values different values of $n_{2,2}p$ and P_a (p) are presented in Figure 1.

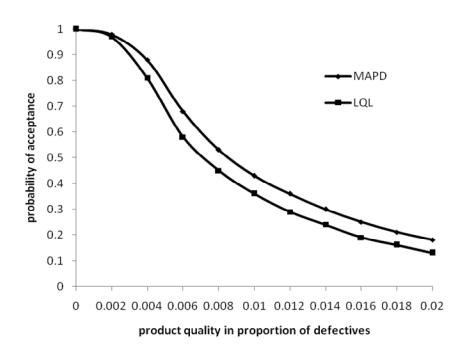


Figure 1:OC curves for TNT-(86;0,1)&(103;0,1)

CONCLUSION

In this paper using the operating procedure of mixed sampling plan with TNT-(n;c₁,c₂) as Attribute plan, tables are constructed for the mixed sampling plan indexed through the parameters MAPD and LQL by taking Poisson distribution as a baseline distribution. It is concluded from the study that the second stage sample size required for TNT-(n;c₁,c₂) plan indexed through MAPD is less than that of the second stage sample size of the TNT-(n;c₁,c₂) plan indexed through LQL justified by Sampath Kumar. Examples are provided for a specified value of $\beta_2' = 0.04$. If the floor engineers know the levels of MAPD or LQL, they can have their sampling plans on the floor itself by referring to the tables. This provides the flexibility to the floor engineers in deciding their sampling plans. Various plans can also be

International Journal of Applied Engineering and Technology ISSN: 2277-212X (Online) An Online International Journal Available at http://www.cibtech.org/jet.htm
2012 Vol. 2 (1) January-March, pp38-44/Upadhyay and Shanker

Research Article

constructed to make the system user friendly by changing the first stage probabilities (β_* ', β_2 ') and can also be compared for their efficiency.

REFERENCES

Adams, R.M., and Lamberson, G. (1975). A modified combined variables and attributes scheme, *ASQC*, 29th *Annual Technical Conference Transactions* 118-128.

Adams, R.M., and Mirkhani, K. (1976). Combined variables and attributes plan, σ - unknown, *ASQC Annual Technical Conference Transactions* 292-300.

Calvin, T.W. (1977). TNT zero acceptance number sampling, *American Society for Quality Control Annual Technical Conference Transactions*, Philadelphia, PA 35-39.

Devaarul, S. (2003). Certain Studies Relating To Mixed Sampling Plans and Reliability Based Sampling Plans - PhD thesis- Bharathiar University, Tamil Nadu, India.

Elder, R.S., and Muse, H.D. (1982). An approximate method for evaluating a Mixed Sampling Plans, *Techno metrics*, 24. 207-211.

Mayer, P.L. (1967). A Note on Sum of Poisson Probabilities and An application, *Annals of Institute of Statistical Mathematics*, Vol.19, pp.537-542.

Radhakrishnan, R., and Sampath Kumar, R. (2006a). Construction of mixed sampling plan indexed through MAPD and IQL with Single Sampling Plan as attribute plan, *National Journal of Technology*, Vol.**2**(2) 26-29.

Radhakrishnan, R., and Sampath Kumar, R. (2006b). Construction of mixed sampling plans indexed through MAPD and AQL with chain sampling plan as attribute Plan, *STARS Int. Journal*, Vol.7(1) 14-22. **Radhakrishnan, R., and Sampath Kumar, R.** (2007a). Construction and comparison of mixed sampling plans having repetitive group sampling plan as attribute plan, *National Journal of Technology*, Vol 4 (3) 1-6.

Radhakrishnan, R., and Sampath Kumar, R. (2007b). Construction of mixed sampling plans indexed through MAPD and IQL with double sampling plan as attribute Plan, *The Journal of the Kerala Statistical Association*, Vol.**18** 13-22.

Radhakrishnan, R., and Sampath Kumar, R. (2007c). Construction of mixed sampling plans indexed through MAPD and AQL with double sampling plan as attribute Plan, *The International Journal of Statistics and System*, Vol.2(2) 33-39.

Radhakrishnan, R., and Sampath Kumar, R. (2009). Construction and comparison of mixed sampling pans having ChSP-(0, 1) plan as attribute plan, *International Journal of Statistics and management*, Vol.**4**(1-2) 134-149.

Radhakrishnan, R., and Sampath Kumar, R. and Saravanan, P.G. (2009). Construction of dependent mixed sampling plans using single sampling plan as attribute plan, *International Journal of Statistics and System*, Vol.**4**(1) 67-74.

Schilling, E.G. (1967). A General Method for Determining the Operating Characteristics Of Mixed Variables- Attributes Sampling Plans single side specifications, S.D.known. PhD Dissertation - Rutgers - The State University, New Brunswick, New Jersy

Soundararajan, V. (1975). Maximum Allowable Percent Defective (MAPD) Single Sampling Inspection by Attributes Plan, *Journal of Quality Technology*, Vol. **7** (4) 173-177.

Suresh, K.K., and Balamurali, S. (1996). Designing of Tightened–Normal–Tightened (TNT) Plans indexed by MAPD, *Communications in Statistics*, Vol.**22**(7) 2043-2056.