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ABSTRACT 
In this paper, a numerical study is presented for the non-isothermal flows through a curved rectangular 
duct of aspect ratios ranging from 1 to 4 at a constant curvature 0.1. Numerical calculations are carried 
out by using a spectral method for the Dean number Dn = 100 with a temperature difference between the 
vertical sidewalls for the Grashof numbers, Gr = 100, 500 and 1000, where the outer wall is heated and 
the inner wall cooled. The main concern of the present study is to investigate the unsteady flow 
characteristics through a curved rectangular duct as the aspect ratio is increased. With a view to study the 
non-linear behavior of the unsteady solutions, time evolution calculations of the unsteady solutions are 
obtained, and it is found that the steady-state solution turns into time periodic solution if the Dean number 
or the Grashof number is increased. For large aspect ratios, it is found that the chaotic solutions appear at 
small Dn or Gr. Effect of secondary vortices on unsteady solutions are also investigated. 
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INTRODUCTION 
The study of flows through a curved duct is of fundamental interest because of its ample applications in 
fluids engineering, such as in air conditioning systems, refrigeration, heat exchangers, ventilators, and the 
blade-to-blade passages in modern gas turbines. Blood flow in human veins and arteries is another 
important application of the curved duct flows. The flow through a curved duct shows physically 
interesting feature under the action of the centrifugal force caused by the curvature of the duct. The 
presence of curvature generates centrifugal forces which act at right angle to the main flow direction and 
produce secondary flows. Dean (1927) was the first who formulated the problem in mathematical terms 
under the fully developed flow condition. He found the secondary flow consisting of a pair of counter 
rotating vortices caused by the centrifugal force. Since then, there have been a lot of theoretical and 
experimental works concerning this flow. Berger et al. (1983), Nandakumar and Masliyah (1986) and Ito 
(1987) may be referred to for some outstanding reviews on curved duct flows. 
One of the interesting phenomena of the flow through a curved duct is the bifurcation of the flow because 
generally there exist many steady solutions due to channel curvature. Dennis and Ng (1982) and 
Nandakumar and Masliyah (1982) studied dual solutions of the flow through a curved duct. Yang and 
Keller (1986) studied the bifurcation of the flow for small curvature and found multiple branches of 
solutions. An early bifurcation structure and linear stability of the steady solutions for fully developed 
flows in a curved square duct was investigated by Winters (1987). He applied bifurcation analysis to it 
and found that there are many symmetric and asymmetric steady solutions among which linearly stable 
ones are few. However, the existence of the multiple solutions of the flow through a curved duct with the 
large aspect ratio was first studied by Yanase and Nishiyama (1988). They obtained two kinds of 
solutions: the two-vortex solution and the four-vortex solution for the same aspect ratio. Wang and Yang 
(2004) performed a numerical study on fully developed bifurcation structure and stability of the forced 
convection in a curved square duct flow. Recently, Mondal et al. (2006) performed numerical prediction 
of non-isothermal flows through a curved square duct with the effects of curvature. Very recently, 
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Mondal et al. (2010) performed numerical prediction of secondary flow and unsteady solutions through a 
curved rectangular duct of aspect ratio and revealed some new features of unsteady flow behavior through 
a curved channel.  
One of the most important applications of curved duct flow is to enhance the thermal exchange between 
two sidewalls, because it is possible that the secondary flow may convey heat and then increases heat flux 
between two sidewalls. Chandratilleke and Nursubyakto (2003) presented numerical calculations to 
describe the secondary flow characteristics in the flow through curved ducts of aspect ratios ranging from 
1 to 8 that were heated on the outer wall, where they studied for small Dean numbers and compared the 
numerical results with their experimental data. Recently, Yanase et al. (2005a) performed numerical 
investigation of thermal (Gr = 100) and non-thermal flows (Gr = 0) through a curved rectangular duct 
with differentially heated vertical sidewalls, where they obtained many branches of steady solutions and 
addressed the time-dependent behavior of the unsteady solutions. In the succeeding paper, Yanase et al. 
(2005b) studied the bifurcation structure as well as the effects of secondary flows on convective heat 
transfer for moderate Grashof numbers. However, complete bifurcation structure as well as transient 
behavior of the unsteady solutions for the Dean approximation are yet unresolved, which is important 
from both engineering and scientific point of view. 
In the present paper, numerical results are presented for the fully developed two-dimensional flow of 
viscous incompressible fluid through a curved duct with differentially heated vertical sidewalls for 
various aspect ratios. The aim of the paper is to investigate the flow characteristics with the investigation 
of time-dependent behavior of the unsteady solutions.  
2. Basic Equations 
Consider a hydrodynamically and thermally fully developed two-dimensional flow of viscous 
incompressible fluid through a curved duct with a constant curvature. The cross section of the duct is a 
rectangle with width d2 and height h2 . It is assumed that the outer wall of the duct is heated while the 
inner one is cooled. The temperature of the outer wall is TT 0 and that of the inner wall is TT 0 , 
where 0T . The y,x  and z axes are taken to be in the horizontal, vertical, and axial directions, 
respectively. It is assumed that the flow is uniform in the axial direction (i.e. in the z direction), and that it 
is driven by a constant pressure gradient G along the center-line of the duct, that is, the main flow in the 
axial direction as shown in Fig. 1.  

                                               
 

Figure 1: Coordinate system of the curved rectangular duct. 
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The variables are non-dimensionalized by using of the representative length d, the representative 
velocity d/vU 0 , where   is the kinematic viscosity of the fluid. We introduce the non-dimensional 
variables defined as  
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where u , v  and w are the non-dimensional velocity components in the x , y and z directions, 
respectively; t is the non-dimensional time, P  the non-dimensional pressure,  the non-dimensional 

curvature defined as 
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 , and temperature is non-dimensionalized by T . In the above method of 

non-dimensionalization, the variables with prime denote the dimensional quantities. Since the flow field 
is uniform in the z-direction, the sectional stream function   is introduced as follows: 
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We introduce a new coordinate variable y  in the y -direction as lyy  , where d
hl   is the aspect 

ratio of the duct cross section. Then basic equations for ,w  and T are derived from the Navier-Stokes 
equations and the heat-conduction equation with the Boussinesq approximation as follows: 
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Dn, Gr and Pr, which appear in Eqs. (2.2) - (2.4) are defined as  
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where  ,  ,  and g are the viscosity, the coefficient of thermal expansion, the coefficient of thermal 
diffusivity and the gravitational acceleration, respectively. G  is the pressure gradient along the duct axis 
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and is taken to be positive. In the present study, Gr and l (aspect ratio) vary, while  , Dn and Pr are fixed 
as 10. , Dn = 100 and Pr = 7.0 (water). 
The rigid boundary conditions for w  and   are  
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and the conducting boundary conditions for T are assumed as 
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3. Numerical Calculations 
In order to solve the Eqs. (2.2) - (2.4) numerically, the spectral method is used. This is the method which 
is thought to be the best numerical method to solve the Navier-Stokes equations as well as the energy 
equation. Details of this method are discussed in Mondal (2006). By this method the variables are 
expanded in a series of functions consisting of the Chebyshev polynomials. That is, the expansion 
functions  xn  and  xn  are defined as  
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where M and N are the truncation numbers in the x- and y-directions, respectively. The expansion 
coefficients mnw , mn  and mnT  are then substituted into the basic Eqs. (2.2), (2.3) and (2.4) and the 
collocation method is applied. As a result, the nonlinear algebraic equations for mnw , mn  and mnT  are 
obtained. The collocation points are taken to be 
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The steady solutions are then obtained by the Newton-Raphson iteration method assuming that all the 
coefficients are time independent. Finally, in order to calculate the time-dependent solutions, the Crank-
Nicolson and Adams-Bashforth methods together with the function expansion (3.2) and the collocation 
method are applied. We performed numerical calculations for Gr = 100, 500 and 1000 at Dn = 100 for the 
aspect ratios 21,l  , 3 and 4. 
4. Resistance Coefficient 
We use the resistance coefficient   as one of the representative quantities of the flow state. It is also 
called the hydraulic resistance coefficient, and is generally used in fluids engineering, defined as  
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where quantities with an asterisk denote dimensional ones,  stands for the mean over the cross section 

of the rectangular duct, and    .44/224* dlddlddh   The mean axial velocity w  is calculated 
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Since   ,Gz/PP ***  21    is related to the mean non-dimensional axial velocity w  as                                                  
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In this paper, we use   to discriminate steady solution branches and to pursue the time evolution of the 
unsteady solutions. 
 
5. RESULTS AND DISCUSSION 
In order to study the non-linear behavior of the unsteady solutions, time-evolution calculations of the 
resistance coefficient  , given by Eq. (4.3), are performed. Numerical calculations are carried out 
for ,.10 0.7Pr  , 100Dn  and 500100,Gr  and 1000 for the aspect ratios 321 ,,l   and 4.  
 
                              
                                                                                                         
 
 
 
 
 
 
                                         (a)                                                                      (b) 
 
 
 
Figure 2: (a) Time-evolution of   with the thermal effect for Dn = 100 and l = 1 (square duct) for 
Gr = 100, 500 and 1000 (thick solid line: Gr = 100, thin solid line: Gr = 500, dashed line: Gr = 1000). 
(b) Secondary flow patterns (top) and temperature distributions (bottom) for various values of Gr 
at Dn = 100 and l = 1 at time t = 10. 
We perform time-evolution calculation of the resistance coefficient   for Dn = 100 and 1l  (square 
duct) as shown in Fig. 2(a). In this figure, a thick solid line stands for Gr = 100, a thin solid line Gr = 500, 
and a dashed line Gr = 1000. As seen in Fig. 2(a), the flow approaches a steady-state immediately for all 
three cases of Gr, and   becomes small if Gr is increased. Since the unsteady flow is steady-state 
solution, a single contour of secondary flow pattern and the temperature profile is shown in Fig. 2(b) at 
time t = 10, where the contours of   and T are drawn with the increments   = 0.8 and T  = 0.2, 
respectively. The same increments of  , and T are used for all the figures in this paper, if not specified. 
In the figures of the secondary flow, solid lines  0  show that the secondary flow is in the counter 
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clockwise direction while the dotted lines  0  in the clockwise direction. Similarly, in the figures of 
the temperature field, solid lines are those for T   0 and dotted ones for T < 0. As seen in Fig. 2(b), the 
unsteady flow is a two-vortex solution for Dn = 100 and Gr = 100 and 500 for l = 1, but a single-vortex 
solution for Dn = 100 and Gr = 100 for l = 1. It is found that when Gr becomes large the symmetry with 
respect to 0y  breaks. The reason is that the effect of buoyancy force becomes comparable as that of 
centrifugal force when the temperature difference becomes large. As seen in Fig. 2(b), the temperature 
profile is consistent with the secondary vortices, and the temperature is distributed significantly from the 
heated wall (outer wall) to the fluid as the Grashof number becomes high. 
 
 

 
 
 
 
 
                                       
                                       (a)                                                                       (b) 
 
 
 
Figure 3: (a) Time-evolution of   with the thermal effect for Dn = 100 and l = 2 for Gr = 100, 500 
and 1000 (thick solid line: Gr = 100, thin solid line: Gr = 500, dashed line: Gr = 1000). (b) Secondary 
flow patterns and temperature distributions for Gr =100 and 500 at Dn = 100 and l = 2 at time t = 
10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Secondary flow patterns (top) and temperature profiles (bottom) for Dn = 100, l = 2 and 
Gr = 1000 for one period of oscillation at time 0806 .t.  . 
Then we perform time-evolution calculation of   for the aspect ratio l = 2 at Dn = 100 with the thermal 
effect at Gr = 100, 500 and 1000, as shown in Fig. 3(a). It is found that the unsteady flow attains a steady-
state solution for Gr =100 and 500, but oscillates periodically for Gr = 1000. Since the flow is a steady-
state solution for Gr =100 and 500 at Dn = 100, we show a single contour of secondary flow pattern and 
the temperature profile for Gr = 100, 500 in Fig. 3(b) at time t = 10. Figure 4 shows typical contours of 
secondary flow patterns and temperature profiles for the periodic oscillation at Dn = 100 and Gr = 1000 at 
l = 2, for one period of oscillation at time 0806 .t.  . As seen in Fig. 4, the secondary flow is an 
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asymmetric two-vortex solution; one is a large vortex dominating the smaller one. The periodic change is 
clearly observed in the secondary flow patterns and in temperature distributions as seen in Fig. 4.  
 
 
 
 
 
 
 
 
                                            
                                           (a)            (b) 
 
 
 
Figure 5: Time-evolution of   with the thermal effect for Dn = 100 and l = 3 for Gr = 100, 500 and 
1000. (thick solid line: Gr = 100, thin solid line: Gr = 500, dashed line: Gr = 1000). (b) Secondary 
flow pattern (left) and temperature profile (right) for Dn = 100, l = 3 and Gr = 100 at time t = 30. 
 
 
 
 
 
 

     
 

  
                                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Secondary flow patterns and temperature distributions for Dn = 100, Gr = 500 for the 
aspect ratio l = 3 at time 037035 .t.  . 
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Figure 7: Secondary flow patterns and temperature distributions for Dn = 100, Gr = 1000 for the 
aspect ratio l = 3 at time 0806 .t.  . 
 
We show the time-evolution of   with the thermal effect for Gr = 100, 500 and 1000 and Dn = 100 for 
the aspect ratio l = 3 in Fig. 5(a). As seen in Fig. 5(a), the unsteady flow is a steady-state solution for Gr = 
100 but a periodic solution at Gr = 500 and a periodic solution consisting with plural periods (i.e. multi-
periodic solution) at Gr = 1000. Since the flow is a steady-state solution for Gr =100, Dn = 100 and l = 3, 
we show a single contour of secondary flow pattern and the temperature profile at time t = 30 in Fig. 5(b). 
It is found that the steady-state solution is an asymmetric two-vortex solution. In order to see the periodic 
change of the flow patterns, as time proceeds, typical contours of secondary flow patterns and 
temperature profiles for Dn = 100 and Gr = 500 at l = 3 are shown in Fig. 6 for one period of oscillation at 
time 037035 .t.  . As seen in Fig. 6, the periodic oscillation at Gr = 500 is an asymmetric two-vortex 
solution. Then we show typical contours of secondary flow patterns and temperature distributions for the 
multi-periodic oscillation at Dn = 100, Gr = 1000 for the aspect ratio l = 3 in Fig. 7, for one period of 
oscillation at time 0806 .t.  , where it is seen that the unsteady flow at Gr = 1000 oscillates 
periodically between the asymmetric two-vortex solutions with one large vortex dominating the smaller 
one. It is found that though the symmetry with respect to 0y  is approximately maintained for Gr = 
100 (see Fig. 5(b)), it completely disappears if Gr is increased more. In Figs. 6 and 7, the periodic 
oscillations of the time-dependent flows are observed. From these results, it is found that the oscillation 
tends to occur when the Grashof number or the aspect ratio is increased keeping the Dean number fixed. 
The temperature distribution is consistent with the secondary vortices, and convective heat transfer is 
observed from the heated wall to the fluid as the Grashof number is increased. 
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Figure 8: Time-evolution of   with the thermal effect for Dn = 100 and l = 4 for Gr = 100, 500 and 
1000. (thick solid line: Gr = 100, thin solid line: Gr = 500, dashed line: Gr = 1000). (b) Secondary 
flow pattern (left) and temperature profile (right) for Dn = 100, l = 4 and Gr = 100 at time t = 20. 
                   t    20.0      20.5      21.0      21.5      22.0      22.5      23.0  
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Figure 9: Secondary flow patterns and temperature distributions for Dn = 100, Gr = 500 for the 
aspect ratio l = 4 at time 0.230.20  t . 
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Figure 10: Secondary flow patterns and temperature distributions for Dn = 100, Gr = 1000 for the 
aspect ratio l = 4 at time 5.230.20  t . 
 
Then we perform time-evolution of   for Dn = 100 and Gr = 100, 500 and 1000 for the aspect ratio l = 4, 
as shown in Fig. 8(a). It is found that the unsteady flow is a steady-state solution for Gr = 100 but a 
periodic solution at Gr = 500 and a multi-periodic solution at Gr = 1000. Since the flow is a steady-state 
solution for Gr =100, Dn = 100 and l = 4, we show a single contour of secondary flow pattern and the 
temperature profile at time t = 20 in Fig. 8(b). It is also found that the steady-state solution is an 
asymmetric two-vortex solution. In order to see the periodic change of the flow patterns and temperature 
distributions, as time proceeds, typical contours of secondary flow patterns and temperature profiles for 
Dn = 100 and Gr = 500 at l = 4 are shown in Fig. 9 for 0.230.20  t . As seen in Fig. 9, the periodic 
oscillation at Gr = 500 is an asymmetric two-vortex solution. The upper vortex is a large vortex 
comprising with two minor vortices. Then we show typical contours of secondary flow patterns and 
temperature distributions for the multi-periodic oscillation at Dn = 100, Gr = 1000 for the aspect ratio l = 
4 in Fig. 10 for the time interval 5.230.20  t , where it is seen that the unsteady flow at Gr = 1000 
oscillates periodically between the asymmetric two-vortex solutions with one large vortex dominating the 
smaller one. It is found that as the Grashof number increases the symmetry with respect to 0y  
gradually disappears and a large vortex covers the whole cross-section of the duct. It is also found that the 
oscillation tends to occur when the Grashof number or the aspect ratio is increased, if the Dean number is 
kept constant. 
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Conclusions 
We obtained unsteady solutions for the non-thermal flows through a curved rectangular duct of aspect 
ratios 1 to 4 for the Dean number Dn = 100 with a temperature difference between the vertical sidewalls 
for the Grashof number Gr = 100, 500 and 1000. The outer wall of the duct is heated while the inner wall 
cooled. Spectral method is used as a basic tool to solve the system of non-linear differential equations.  
We studied the unsteady solutions of the velocity and temperature fields and it is found that the larger Gr 
is, the flow loses its symmetry with respect to the plane 0y . For some cases, on the other hand, the 
symmetry is approximately maintained when Dn is increased. Therefore the temperature difference and 
the pressure gradient along the duct affect the fluid in an opposite manner as for the symmetry of the 
flow. It is also found that the flow becomes time-dependent and periodic when Dn or Gr is increased. For 
this case, the two effects, centrifugal effect and buoyancy effect, affect the fluid in a similar manner. For 
large aspect ratios, it is found that, the transition from periodic to chaotic state occurs if the Dean number 
or the Grashof number is small. 
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