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ABSTRACT 

Salinity affects plant growth and development in various ways through its impact on photosynthesis, 

water relations and nutrient absorption. The ability of plants to tolerate salts is determined by many 

biochemical pathways which enable acquisition of water, protect chloroplast functions and maintain ion 

homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, 

specific proteins and certain free radical enzymes to control ion and water flux and support scavenging of 

oxygen radicals. It is highlighted that the fundamental mechanism of salinity’s effects on plant function is 

the increase in the osmotic pressure of the plant’s environment that inhibits the absorption of water and 

nutrients.  There is a need to determine the underlying biochemical mechanisms of salinity tolerance so 

as to provide plant breeders with appropriate indicators.  
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INTRODUCTION   

Abiotic stresses, in particular drought and salinity, not only compromise crop quality and limit yield, but 

also restrict the geographical range over which crop production is viable (Thakur et al., 2010). Soil 

salinity has been a major concern to global agriculture throughout human history (Lobell et al., 2007). In 

recent times, it is a serious problem and is increasing steadily in many parts of the world, particularly in 

arid and semi arid areas (Abdel, 2010). Saline soils occupy 7% of the earth’s land surface (Ruiz-Lozano et 

al., 2001) and increased salinization of arable land will result up to 50% land loss by the middle of the 

21
st
 century (Wang et al., 2003). At present, out of 1.5 billion hectares of cultivated land around the 

world, about 77 million hectares (5 %) is affected by excess salt content (Sheng et al., 2008). The 

deleterious effects of salinity on plant growth are associated with (1) low osmotic potential of soil 

solution, (2) nutritional imbalance (Attia et al., 2011), (3) specific ion effect (Munns and Tester, 2008), 

or 4) a combination of these factors (Arzani, 2008). All of these cause adverse pleiotropic effects on plant 

growth and development at physiological and biochemical levels and at the molecular level (Munns, 

2002; Tester and Davenport, 2003; Winicov, 1998). 

The most important aspect of plant responses leading to salt stress tolerance is the regulation of uptake 

and distribution of Na
+ 

ions (Tester and Davenport, 2003). Along osmotic homeostasis, maintenance of 

ionic homeostasis is an important strategy for achieving enhanced tolerance to environmental stresses 

(Sun et al., 2009). Despite a great deal of research into salinity tolerance of plants, the metabolic sites at 

which salt stress damages plants and the adaptive mechanisms utilized by plants to survive under saline 
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stress are still not well understood. The main problem is due to the lack of well defined plant indicators 

for salinity tolerance that could practically be used by plant breeders for improvement of salinity 

tolerance in a number of important agricultural crops. This is partly due to the fact that the mechanisms of 

salt tolerance are very complex and variation occurs not only amongst the species but in many cases, also 

among cultivars within a single species (Ashraf, 2002; Ashraf and Harris, 2004; Khan et al., 2006; Shafi 

et al., 2011 a, b; Bakht et al., 2006; 2011). 

Researchers have suggested that plant species possesses distinctive indicators of salt tolerance at the 

whole plant, tissue or cellular levels (Munns, 2002; Ashraf, 2002). Nonetheless, parallels have been 

drawn between different biochemical indicators and plant tolerance. For ex., Glycine betaine (quaternary 

ammonium compound) and proline (amino acid) play a key role in mediating osmotic adjustment and 

protecting the subcellular structures in stressed plants. In various studies a positive correlation between 

the accumulation of these two compatible solutes and stress tolerance has been observed (Yamada et al., 

2003; Yang et al., 2003).  

While determining the role of various antioxidants in the salt tolerance of tomato, Mittova et al., (2002) 

found that higher salt tolerance of wild tomato (Lycopersicon pennellii) as compared to cultivated tomato 

(L. esculentum) was correlated with increased activities of  anti-oxidative enzymes like SOD (superoxide 

dismutase), APX (ascorbate peroxidase), and POD (guiacol peroxidase).  

Thus we can say that the compatible solutes that usually participate in osmotic adjustment vary between 

species and plant developmental stage and consist of sugars (glucose and fructose), sugar alcohols 

(glycerol), complex sugars (trehalose, raffinose and fructans), sulfonium compounds (choline osulfate, 

dimethyl sulfonium propironate) and amino quaternary compounds (glycine betaine and proline) and it is 

also observed that plants have developed efficient antioxidant system which can protect them under 

various environmental stress conditions.  

This review has been focused upon salt tolerance mechanism which is acquired by the plants and includes 

mainly biochemical responses of plants under salt stress which can be used as stress indicator at the 

cellular and sub cellular level. 

Salt Tolerance 

Salt tolerance is the ability of a plant to grow and complete its life cycle on a substrate that contains high 

concentrations of soluble salt.  

Plants have classified into halophytes and glycophytes depending on their sensitivity to salinity. Plants 

that can survive on high concentrations of salt in the rhizosphere and grow well are called halophytes. 

Depending on their salt-tolerating capacity, halophytes are either obligate or facultative (Parida and Das, 

2005).  

Almost all major crop species as well as most wild species are glycophytes. Although individual 

responses to high salinity may differ, several lines of evidence suggest that all plants use the same general 

salt tolerance regulatory mechanisms, and differences between halophytic and glycophytic species are a 

quantitative rather than qualitative nature (Omami, 2005; Zhu, 2001). 

Mechanism of salt tolerance: Plants have evolved several mechanisms to acclimatize to salinity. It is 

possible to distinguish three types of plant response or tolerance: (Munns and Tester, 2008) 

(a) The tolerance to osmotic stress   

(b) The Na
+ 

exclusion from leaf blades  
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Figure 1: Mechanism of salt tolerance in plants (Horie et al., 2012) 

 

1. Osmotic tolerance: The growth of salt-stressed plants is mostly limited by the osmotic effect of salinity, 

irrespective of their capacity to exclude salt that results in reduced growth rates and stomatal conductance 

(James et al., 2008). If the accumulation of salts reach to the toxic level, the old leaves die (usually old 

expanded leaves) and the young leaves, no more supported by photosynthesis, undergo a reduction of 

growth and new leaves production. It has been demonstrated that the plant’s response to the osmotic stress 

is independent of nutrient levels in the growth medium (Hu et al., 2007). In response to osmotic stress, 

plants produce osmolytes like glycine betaine, trehalose or proline, which protect them from dehydration 

or protein denaturation. However, oxidative stress is an outcome of ionic stress lead to the production of 

different enzymatic or non-enzymatic antioxidants, which protect plants from harmful effects of reactive 

oxygen species (Turan et al., 2012). 

2. Na+ exclusion: It involves the ability to reduce the ionic stress on the plant by minimizing the amount 

of Na
+

 

that accumulates in the cytosol of cells, particularly those in the transpiring leaves. Na
+
 exclusion 

from leaves is associated with salt tolerance in cereal crops including rice, durum wheat, bread wheat and 

barley (James et al., 2011). Salt stress can also induce the accumulation of ABA, which, by means of 

ABI1 and ABI2, can negatively regulate SOS2 or SOS1 and NHX1 (Silva and Gerós, 2009). 
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Figure 2: Signalling pathways responsible for Na+ extrusion in Arabidopsis under salt stress (Silva 

and Gerós, 2009) 

 

Biochemical Effects of Salt Stress in Plants 

Salinity Effects on Protein 

Salt-induced proteins in plants have been classified into two major groups (Mansour, 2000), i.e., (1) salt 

stress proteins, which accumulate only due to salt stress, and (2) stress associated proteins, that 

accumulates in response to various abiotic stress like heat, cold, drought, water logging, and high and low 

mineral nutrients. Proteins accumulation also provides a storage form of nitrogen that is re-utilized later 

(Singh et al., 1987) and also plays a role in osmotic adjustment. Large number of cytoplasmic proteins 

causes alterations in cytoplasmic viscosity of the cell stimulated by salinity (Hasegawa et al., 2000). 

Proteins may be synthesized de novo in response to salt stress or may be present constitutively at low 

concentration and increase when plants are exposed to salt stress (Parvaiz and Satyawati, 2008). 

Salt tolerant shows higher soluble proteins than salt sensitive species of barley, sunflower, finger millet, 

and rice (Ashraf and Harris, 2004). Several researches showed that soluble protein contents of leaves 

decreased in response to salinity (Agastian et al., 2000; Parida et al., 2002; Wang and Nil, 2000).  

Salinity Effects on Amino Acids 

According to Mansour (2000) many amino acids including proline, alanine, arginine, glycine, serine, 

leucine, and valine and the non-protein amino acids (citrulline and ornithine) and amides (glutamine and 

asparagine) accumulate in plants exposed to salt stress. Salt tolerant varieties of sunflower (Ashraf and 

Tufail, 1995), safflower (Ashraf and Fatima, 1995), Eruca sativa (Ashraf, 1994) and Lens culinaris 

(Hurkman et al., 1991) have shown higher amount of total free amino acids than salt sensitive ones. 

Proline is a major amino acid that accumulates in plant at a higher rate than other amino acids (Torabi et 

al., 2010; Abraham et al., 2003). Accumulation of proline occurred in the cytosol and accomplished 

osmotic adjustment (Ketchum et al., 1991). Proline accumulation affects membrane maintenance and also 

alleviated the effects of NaCl on cell membrane interruption (Mansour, 1998). Maggio et al., (2002) noted 
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proline as a signaling/regulatory molecule able to activate multiple responses that are components of the 

adaptation process. There are two alternative routes in proline biosynthesis in higher plants: the 

L-ornithine and the L-glutamate pathways. It is also known that, as in plants, both ornithine and glutamate 

are precursors of proline biosynthesis in microorganisms and mammals. Two enzymes: 

pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR), play major 

roles in proline biosynthetic pathway which was shown in Figure 3. 

There are different reports in terms of effects of salinity on proline in tolerant and sensitive genotypes 

among species. Torabi et al., (2010) and Petrusa and Winicov (1997) noted that salt tolerant alfalfa lines 

had two times more free proline content in root than sensitive lines and also increasing the proline in 

tolerant lines were more rapid than sensitive lines. Kaymakanova et al., (2008) indicated that with 

increasing salinity the amount of proline increased in bean (Phaseolus vulgaris L.).  

 

Figure 3: Biosynthetic pathway of proline 

 

Salinity Effects on Carbohydrates 

The accumulation of soluble carbohydrates in plants has been widely reported as a response to salinity or 

drought, despite a significant decrease in net CO2 assimilation rate (Murakezy et al., 2003). When 

glycophytes are exposed to high salinity, the increase in soluble sugars contributes up to 50% increase in 

osmotic potential (Parvaiz and Satyawati, 2008).  

Trehalose as a disaccharide accumulates in various abiotic stresses and protects membranes and proteins 

in cells exposed to stress caused by water deficit and reduced aggregation of denatured proteins. Also 

trehalose inhibit apoptotic cell death and there are some proofs that trehalose is present in trace amounts 
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in vascular plants, but some roles of trehalose are still unknown (Yamada et al., 2003). Role of sugars in 

adaptation of plants to salinity have been concluded to be universally associated with salt tolerance. 

However, this does not rule out a significant role of soluble sugars in salt tolerance nor a potential role for 

soluble sugar accumulation as an indicator for salt tolerance in breeding programs for some species. 

Salinity Effects on Quaternary Ammonium Compounds 

The quaternary ammonium compounds (QACs) that function as effective compatible osmolytes in plants 

subject to salt stress are glycinebetaine, ß-alaninebetaine, prolinebetaine, choline O-sulfate, 

hydroxyprolinebetaine, and pipecolatebetaine. In several plant species, a positive correlation between leaf 

osmotic potential and glycinebetaine, ß-alaninebetaine and prolinebetaine has been observed. These 

compounds have osmoprotective effects in the cell as well. Under salt stress, glycinebetaine occurs most 

abundantly from all QACs. In higher plants, GB is synthesized in chloroplast from serine via 

ethanolamine, choline, and betaine aldehyde (Rhodes and Hanson, 1993). Choline is converted to betaine 

aldehyde, by choline monooxygenase (CMO), which is then converted to GB by betaine aldehyde 

dehydrogenase (BADH) (Figure 4). Although other pathways such as direct N-methylation of glycine is 

also known, the pathway from choline to glycine betaine has been identified in all GB-accumulating plant 

species (Ashraf and Foolad, 2007).  

 

Figure 4: Biosynthetic pathway of Glycinebetaine 

  

Positive effects of exogenous application of GB on plant growth and final crop yield under salt stress 

have been reported in a number of crops such as tobacco, wheat, maize, barley, sorghum, soybean and 

common beans (Ashraf and Foolad, 2007). Many researchers demonstrate positive effects of exogenous 

application of GB on plant growth and final crop yield examples include tobacco, wheat, barely, sorghum, 

soyabean. 

Salinity Effects on Polyols 

Polyols, the polyhydric alcohols, are among the compatible solutes involved in osmoregulation and are 

thought to play a role in plant salt tolerance (Bohnert and Shen, 1999). They exist in both acyclic and 

cyclic forms and are widely distributed in the plant kingdom. The most common polyols in plants include 

acyclic forms, mannitol, glycerol, sorbitol, and cyclic (cyclitols) forms ononitol and pinitol. In general, 

they are thought to accumulate in the cytoplasm of some halophytes to overcome the osmotic 

disturbances caused by high concentrations of inorganic ions compartmentalized in vacuoles. Polyols 

make up a considerable percentage of all assimilated CO2 as scavengers of stress-induced oxygen radicals 

(Bohnert et al., 1995). Mannitol, a sugar alcohol that may serve as a compatible solute to cope with salt 
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stress, is synthesized via the action of a mannose-6-phosphate reductase (M6PR) in celery (Zhifang and 

Loescher, 2003) and its accumulation increases when plants are exposed to low water potential. The 

accumulation is regulated by inhibition of competing pathways and decreased mannitol consumption and 

catabolism (Stoop et al., 1996). Studies using transgenic tobacco and Arabidopsis have shown improved 

growth of mannitol accumulating plants under stress (Thomas et al., 1995). Mannitol improves tolerance 

to stress through scavenging of hydroxyl radicals (OH ) and stabilization of macromolecular structures. In 

tobacco, mannitol protects the thiol-regulated enzymes phosphoribulokinase, thioredoxin, ferrodoxin and 

glutathione from OH  (Shen et al., 1997). Abebe et al., (2003), however, state that the amount of mannitol 

accumulated in response to stress was small and its effect on osmotic adjustment was less than that of 

other carbohydrates.  

Salinity Effects on Polyamines 

Polyamines are polyvalent compounds containing two or more amino groups. The most common 

polyamines in higher plants are putrescine, spermidine and spermine, with the diamines, diaminopropane 

and cadaverine occurring but less commonly (Mansour 2000). They can be classified into two groups on 

the basis of their biological role (Kuznetsov et al., 2002). The first group includes putrescine and 

cadaverine, whose function is similar to that of auxins and gibberellins, i.e. cell elongation and root 

formation. The second group comprises spermidine and spermine, which, like cytokinins, regulate cell 

division, organogenesis, and plant senescence. At neutral pH, polyamines are polycations and can 

frequently bind to polyanions in the cell such as DNA, RNA and phospholipids, thereby stabilizing these 

macromolecules. They also stabilize protoplasts, activate cell division during embryogenesis and delay 

senescence in most plants (Genard et al., 1991). Furthermore, the contribution of polyamines to osmotic 

adjustment appears to be small compared with other nitrogenous compounds. Nevertheless, in pea 

seedlings, all three common polyamines alleviated the inhibitory effect of salt stress (Ivanova et al., 

1991). The synthesis of polyamines in plants occur by two alternative pathways, namely ornithine 

decarboxylase (ODC) catalysed reaction and second is from arginine (Arg) as a result of the action of Arg 

decarboxylase via agmatine. The polyamines in plants are not only found in the cytoplasm, but also in 

certain organelles like mitochondria, chloroplasts and vacuoles (Kusano et al., 2008). A few plant species, 

including Arabidopsis thaliana , lack the ODC pathway (Kusano et al., 2007). The genes encoding 

enzymes for the polyamine biosynthesis pathway have been cloned and characterized from various plant 

species (Liu et al., 2007; Kusano et al., 2008). Polyamines and the activities of their major metabolic 

enzymes were studied in Brassica campestris in response to stress (Das et al., 1995). It was found that 

prolonged stress caused only small changes in polyamine level, and activities of arginine and ornithine 

decarboxylases, and polyamine oxidase, whereas short-term stress caused a significant increase in 

polyamine level and enzyme activities.  

Salinity Effects on Antioxidants  

Plants have an effective system for scavenging active oxygen species that protect them from harmful 

oxidative reactions (Foyer et al., 1994; Mittova et al., 2004). Anioxidative enzymes such as catalase 

(CAT), glutathione reductase (GR), superoxide dismutase (SOD) and glutatione-S transferase are the 

main enzymes to protect cells (Garratt et al., 2002; Mittova et al., 2003). Whereas superoxide dismutase, 

metabolizes oxygen (O2) radicals to hydrogen peroxide (H2O2), then protecting cells from damage and 

catalase, ascorbate peroxidase, and a variety of peroxidases catalyze the subsequent breakdown of H2O2 
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to water and oxygen (Garratt et al., 2002; Mittova et al., 2002; Mittova et al., 2003). Several researchers 

showed that when plants are exposed to salinity the activity of antioxidant increase, in rice (Lee et al., 

2001), wheat (Meneguzzo et al., 1999) and lentil (Bandeolu et al., 2004). Recent studies have 

demonstrated that over expression of mitochondrial Mn-SOD in transgenic Arabidopsis thaliana (Wang 

et al., 2004) and chloroplastic Cu/Zn-SOD in transgenic Nicotiana tabacum (Badawi et al., 2004) can 

provide enhanced tolerance to salt stress. Similar results have been found in Morus alba (Ramajulu and 

Sudhakar, 2001), Triticum aestivum (Sairam and Tyagi, 2004) and Lycopersicon sp. (Mittova et al., 

2002). Bacterial catalase and Glutathione-STransferase / glutathione peroxidase were reported to increase 

the performance of plants under stress (Roxas et al., 2000). 

 

Table 1: Salt-stress-accumulating products and their function(s) in conferring tolerance (Parida et 

al., 2005) 

Product 

group 

Specific compound Suggested function(s) 

Proteins Osmotin 

SOD/Catalase 

Pathogenesis-related proteins, Osmoprotection, Radical 

detoxification 

Amino acids Proline 

Ectoine 

Osmotic adjustment 

Osmoprotection 

Sugars Glucose, fructose, 

sucrose, fructans and 

starch 

Osmotic adjustment, Osmoprotection, carbon storage and 

radical scavenging 

Quaternary 

amines 

Glycine betaine 

ß-Alanine betaine 

Dimethyl-sulfonio 

propionate 

Choline-o-sulfate 

Trigonelline 

Osmoprotection 

Preservation of thylakoid and plasma membrane integrity 

Osmoprotection 

 

Osmoprotection 

Osmoprotection 

Polyols Acyclic (e.g., manitol) 

Cyclic (e.g., pinitol) 

Carbon storage, osmotic adjustment 

Osmoprotection, osmotic adjustment 

Retention of photochemical efficiency of PSII 

Radical scavenging 

Polyamines Spermine, Spermidine Ion balance, Chromatin protection 
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Table 2: Response of biochemical parameters with suitable examples under salt stress 

Specific 

compound  

Plant species Response to 

salinity 

References 

Soluble protein 

 

 

 

 

 

 

Brassica juncea var. 

Bio902 

Brassica juncea 

var.Urvashi 

Setaria italic 

Portulaca oleraceae 

Portulaca oleraceae 

Morus alba 

Pisum sativum 

Increase 

Decrease 

Increase 

Decrease 

Increases 

Increase 

Increase 

Mittal et al., (2012) 

Mittal et al., (2012) 

Hendawy et al., (2012) 

Rahdari et al., (2012) 

Rahdari et al., (2012) 

Ahmad and Sharma (2010) 

Ahmad and Jhon (2005) 

Proline Saueda maritime 

Brassica juncea var. 

Bio902 

Brassica juncea 

var.Urvashi 

Portulaca oleraceae 

Borago officinalis 

Borago officinalis 

 

Increase 

Increase 

Decrease 

Increases 

Decrease 

Increases 

Rajaravindran and Natarajan 

(2012) 

Mittal et al., (2012) 

Mittal et al., (2012) 

Rahdari et al., (2012) 

Enteshari et al., (2011) 

Enteshari et al., (2011) 

Carbohydrates 

 

 

Portulaca oleraceae 

Matricaria chamomilla 

Borago officinalis 

Beta vulgaris L. 

Morus alba 

Increases 

Increases 

Decrease 

Increases 

Increase 

Rahdari et al., (2012) 

Heidari and Sarani (2012) 

Enteshari et al., (2011) 

Daskhan (2010) 

Ahmad and Sharma (2010) 

 

CONCLUSION 

Plants exhibit a variety of responses to salt stress, which are depicted by symptomatic and quantitative 

changes in growth and morphology.  

The ability of the plant cope with or adjust to the salt stress varies across and within species as well as at 

different developmental stages. In addition to genetic means to developing plants with improved salt 

tolerance, attempts have been made to induce salt tolerance in a range of plant species using different 

approaches. Also while some notable progress has been reported as to the development of crop plants 

with improved salt tolerance via traditional breeding, the prospect for genetic engineering plants with salt 

tolerance is also good considering accumulating molecular information on the mechanisms of tolerance 

and contributing factors. 
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