Research Article

IMPROVEMENT OF MULBERRY (MORUS ALBA) FOLIAGE QUALITY USING GA3 IN HILLY CONDITION OF DHAR BLOCK

*Shashi Kanta

Punjab School Education Board, Mohali, Punjab, India

ABSTRACT

Mulberry foliage is main food of silkworm which converts leaf protein into magical silk. The quality and quality of silk completely depends on the health and vigor of mulberry plant. Increased quality foliage production for feeding silkworm by improved cultural practices and nutrients management plays an important role in silk production. The production of quality foliage can be increased by increasing assimilation rate of plant and directing its movements to the foliage through the application of growth regulators. In the direction, foliar spray of 100 ppm GA3, a plant growth regulator in variety S146 *M. alba* L. recorded an increase of 29.75 % in leaf area, 5.86% increase in foliage moisture content and 11.9% increase in foliage moisture retention capacity over control in Dhār Block of Punjab. The study recommends the use of GA3 in sericulture for improvement of foliage production in our country.

Keywords: Growth regulators, GA3, Mulberry Foliage, improvement, regulator and sericulture

INTRODUCTION

The leaves of mulberry (*Morus sp.*), traditionally used for silkworm rearing, is known for its high protein content with good amino acid profile, high digestibility, high mineral content, low fibre content and very good palatability. *Morus alba*, commonly known as white mulberry, is a tree which is native of India, China, and Japan (Atefeh Sheikhlar *et al.*, 2014). In the past, mulberry was mainly cultivated for the silkworm industry.

Mulberry is the main food of silkworm (*Bombyx mori* L). Its quality and quantity very much depends on the good health and vigorous of plants growth. The growth and development of silkworm larvae *Bombyx mori* L and the economics characters of cocoon were greatly influenced by the nutritional content of mulberry foliage (Boase *et al.*, 1995). To get a good cocoon were greatly influenced by the nutritional content of mulberry foliage. To get a good cocoon crops, the quality and quality of mulberry foliage has to be improved (Boschini, 2002). In the past, mulberry was mainly cultivated for the silkworm industry, today; efforts have been made to improve the quality and quantity of mulberry foliage by mulberry foliage 1. The use of fertilizers

- 2. Better managent coupled with variety development and
- 3. Genetic improvement

But no efforts has so far been made to improve the mulberry foliage through application of growth regulators (Boschini, 2002), which are simple, easy to use required in small quantity and economics with no or little harm. Looking into the beneficial effects of plant growth regulators on various crop plants in improving the crop quality. To make qualitative and quantitative improvement of mulberry foliage through GA3, application in Dhār Block was our present study (Datta, *et al.*, 2002).

MATERIALS AND METHODS

The experiment was conducted in Dhār Block for one year. One year old plantation of S146 genotype was selected. Experiments were simultaneously conducted with Morus alba foliage with of growth regulator GA3 at three places and treatment by different doses *i.e.*, 25ppm, 50ppm and 100ppm on 25 plants of 90*90cms plot in Dhar Block Area .The experiment was laid in randomization block design (Karaisshi *et al.*, 1957). Three data foliage area, moisture content and retention was noted of different doses taken for experimental results.

Research Article

RESULTS AND DISCUSSION

By Appling different doses of GA3 25ppm, 50 ppm and 100 ppm on Mulberry plant .The data revealed that foliage area, moisture content and retention capacity have improved significantly (Martin, *et al.*, 2002) . The result seen from following data was

The maximum increase in Foliage area is recorded maximum in 100 ppm followed by 50 ppm and least in 25 ppm. Trend for Leaf moisture was again same the maximum was recorded 5.80 % in 100ppm as 5.3% in 50ppm and 3.6% in 25ppm respectively (Martin, *et al.*, 2002). The maximum improvement in moisture retention capability is recorded in 100% ppm followed by 50ppm and 25ppm with GA3 treatments.

Table 1: Influence of GA3 on s146 Mulberry foliage Quality

GA3treatment	Leaf	Increase/	Leaf	Increase/	Moisture	Increase/	Level of
	Area	decrease	Moisture	decrease	Retention	decrease	Significance
0ppm	242.35	No	77.18	No	63.49	- No	No change
		change		change		change	
25ppm	269.42	11.16	80.02	3.67	68.22	9.27	significant
50ppm	291	20.30	81.33	5.37	69.38	9.27	significant
100ppm	311	29.75	81.66	5.80	71.06	11.92	significant
Mean	279	20.40	80.05	4.94	68.04	8.35	-

Overall result is significant. It is much clear from above table. The result was very significant with leaf area, Leaf Moisture and Moisture Retention of mulberry by different dosed of GA3 at different conc (Maurya et al., 2006). It may be due to increase the photosynthesis activity, radiation penetration in crop canopy. Growth regulator stimulus the water uptake increases the protein and free amino acid contents and increases the sugar and starch contents and its retention capability in mulberry were also due to the stimulated water uptake (Saddu et al., 2004). So far as the moisture retention capacity of foliage in concerned, a significant increase in GA3, Concentration has increased. Moisture content of foliage may have direct correlation with leaf cell. It is well known fact that t with greater foliage area. Evaporation also increased which ultimately affect more water consumption. Moisture retention capability also increased due to leaf and cuticle thickness in plants thereby minimizing the surface evaporation of foliage, (Santosh Kumari et al., 1990) also reported that water content of foliage increased due to GA3 treatment and different climate conditions that have correlation with leaf areas, as observed in present study. The above findings are in accordance with Plant growth regulator GA3only improve the growth, if its conc. Increase (Singh and Makkar, 2000). On the basis of above finding, it is concluded that GA3 have improving effects on mulberry foliage over the control significantly under Dhar Block. These are the desirable characters for silkworm feeding, (Patra et al., 2000) it is suggested that GA3 may be used in sericulture for improving of mulberry foliage quality as well as quantity to get good cocoon production.

REFERENCES

Atefeh Sheikhlar, Abd Razk Alimon, Hassan Daud Chee R. Saad Carl D. Webster Goh Yong Meng and Mahdi Ebrahimi (2014). White Mulberry (*Morus alba*) Foliage Methanolic Extract CanAlleviate Aeromonas hydrophila Infection in African Catfish (*Clarias gariepinus*). The Scientific World Journal 80-88.

Boase PC, Majumdar SK and Datta SK (1995). Effect of some growth regulator on the yield and yield attributes of mulberry (*M. alba* L) under rainfed conditions. *Sercologia* 35(2) 297-301.

Boschini CF (2002). Nutritional quality of mulberry cultivated for ruminant feeding. In: Mulberry for animal production (Ed. M. D. Sanchez). *Animal Health and Production Paper No. 147*. FAO, Rome, Italy 171-180.

CIBTech Journal of Bio-Protocols ISSN: 2319 – 3840 (Online) An Open Access, Online Journal Available at http://www.cibtech.org/cjbp.htm 2018 Vol. 7(2) May-August/pp.1-3/Shashi Kanta

Research Article

Datta RK, A Sarkar, P RamaMohan Rao and N R Singhvi (2002). Utilization of mulberry as animal fodder in India. In: Mulberry for animal production (Ed. M. D. Sanchez). *Animal Health and Production Paper No. 147.* FAO, Rome, Italy 183-187.

Karaisshi S and Hoshimoto (1957). Promotion of leaf growth and accelerations of stem elongation by Gibberellins. *The Botanical Magazine* 70 86-91.

Martin G, F Reyes, I Hernandez and M Milera (2002). Agronomic studies with mulberry in Cuba. In Mulberry for animal production (Ed. M. D. Sanchez). *Animal Health and Production Paper No.* 147. FAO, Rome, Italy 103-114

Maurya GS, Sachan SN, Pokhariyal TC and S Chkrabarti (2006). GA3 Effect On Mulberry (*M.alba* L) foliage quality improvements in hill condition of North-West India. *Regional Seminar of Prospectus and Problems as an Economic Enterprises in North east India*100-102.

Patra AK, K Sharma, N Dutta and Pattanaik AK (2002). Effect of partial replacement of dietary protein by a leaf meal mixture containing *Leucaena leucocephala*, *Morus alba and Azadirachta indica* on performance of goats. *Asian-Australian Journal Animal Science* 15 1732-1737.

Saddu D, ZA Jelan, JB Liang and Halim RA (2004). The Potential of Mulberry (*Morus alba*) as a Fodder Crop: The Effect of Plant Maturity on Yield, Persistence and Nutrient Composition of Plant Fractions, *Asian-Australian Journal Animal Science* 17 1657-1662.

Santosh Kumari, Bharati S and Khan MI (1990). Effect of cycocel on growth and metabolism of Sunflower. *Indian Journal of Agricultural Research* **24**(2) 87-93.

Singh B and Makkar HPS (2000). The potential of mulberry foliage as feed supplement in India. In: Mulberry for animal production (Ed. M. D. Sanchez). *Animal Health and Production Paper No. 147*. FAO, Rome, Italy 139-153.