
Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online)

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/04/jls.htm

2015 Vol. 5 (S4), pp. 814-818/Zahedi and Dehghani

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 814

APPLYING A CORRECTIVE SCHEME ON THE DOMAIN POOL TO

ACCELERATE AND IMPROVE THE QUALITY OF THE

FRACTAL IMAGE COMPRESSION

*Zhaleh Molay Zahedi1 and Hamid Dehghani2
1Department Electronics, Boushehr Islamic Azad University

2Malek-Ashtar University of Technology

*Author for Correspondence

ABSTRACT
Here we offer a corrective domain pool scheme for fractal image compression. This scheme selects the

domain pool correctively for each range block, based on the location of that range. Thus, a more effective

and smaller domain library is created for each range. This method reduces the computational load and the

bits required to store the position of the domain. Results of various experiments on famous images show

that this method hasmuch lower distortion rate and computational load.

Keywords: Fractal Compression, Conventional Domain Pools, Range, Domain Library, Corrective

Domain Pool, Reducing the Computational Load

INTRODUCTION
In (main) fractal image compression, an image is partitioned into a set of non-overlapping blocks of size r

× r which are called range blocks and all of possible overlapping blocks of size 2r × 2r, called domain

blocks which constitute domain pools. These domains are contracted to accommodate range blocks. This

contraction is done by averaging the pixels.

Contracted domains will be used as code book to approximate each range block with a transformation. In

addition, this book will be expanded by the inclusion of all rotations and reflections of each domain.

Image segmentation, offset and scaling values for each domain range and index with the best match

should be saved for image reconstruction. The problem of main method is to calculate domain block

seeking with the best matching for each range block. For an image size of n n , the number of range

blocks is  /n r
2

and the number of domain blocks is  n r 
2

2 1 . Calculation of the best match

between a range block and a domain block is  o r
2
. If r is constant, the computational complexity is a

full seeking of  o n4 .

Because of the huge computational load, encoding phase is time-consuming. Many methods have been

proposed to speed up fractal encoding of the image. Some of these methods reduce the number of

domains to decrease the computational load according to some rules. Despite the progress made, waste

and decreasing in accuracyand integrity are the main disadvantages of this method. Here we present a

new method which correctively selects the domain pools for each range block based on the location of the

range. This clearly reduces the encoding time in an exciting way and the amount of compression and

PSNR of image reconstruction further increase because of a library with more efficient and smaller

domain for each range.

Choose a Domain Pool

In conventional methods of selecting domains, sub-squares in an image that upper left corners are located

on a network, will be selected as domains. Here network distancing, determines the size of the domain

pool (Fisher, 1995) and (Dasgupta et al., 2010). Fisher has described the performance of domain pool and

Figure 1 describes this scheme.

This is a 48 × 48 pixel image which the range size is of 4 × 4, the domain size is 8 × 8 and network

distancing is 4. Black squares position is upper left corner of the domains. Domain blocks are well

distributed over the entire image. In the proposed method, the domains are selected in a concentrated local

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online)

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/04/jls.htm

2015 Vol. 5 (S4), pp. 814-818/Zahedi and Dehghani

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 815

area in each range, not the whole image. This local area is called the domain region. The distance between

the two adjacent blocks in vertical or horizontal direction is called search phase size. The domain region

and the search phase size determine the size of the domains. Figure 2 shows the domain pool selection

scheme of the proposed method which the range is 4 × 4 and the domain is 8 × 8, the domain area is a

square with sides of length 12 and the search area size is equal to 2. Black squares in domain region are

located in the upper left corner of the domain. In this example, the size of the domain pool is equal to 9.

Figure 1: The scope of a common domain pool

selection (Fisher, 1995)

Figure 2: The scope of a domain pool selection

in proposed method

The Steps of the Algorithm

The 512 × 512 pepper image is selected as the test image and following domain pools are compared in the

experiments.

𝐷1 Domains are selected as sub-squares of the image which its upper left corner is located on a network

and network has distances equal to 64, 32, 16, 8 and 4. For a 512 × 512 image, 4, 6, 8, 10 and 12 bits are

required respectively to store the domain index. Consequently, the number of operations to find the best

match for each range is 16, 64, 256, 1024 and 4096, respectively.

𝐷2 Domains are selected as sub-squares from each domain range region. The size of the search phase is

set on 1. The number of domain- range comparisons are 64, 256, 1024 and 4096, respectively and they are

set for each range by changing the domain.

𝐷3 Domains are selected as sub-squares from each domain range region. The size of the search is set on 2.

The number of domain- range comparisons for each range is set on 64, 256, 1024, 4096, respectively by

changing the domain region. In experiments, 512 × 512 pepper image is divided in non-overlapping

blocks of size 4 × 4. Domain pool 𝐷1, domain pool 𝐷2 and domain pool 𝐷3 will be used respectively.

Experiments
In the experiments that were done, 512 × 512 pepper image were divided in 4 × 4 non-overlapping range

blocks. Domain pool 𝐷1, domain pool 𝐷2 and domain pool 𝐷3 were used according to what was described

in step 3.

Table (1), (2) and (3) show PSNR reconstructed images, the number of matching operations for each

range and the bits required to store the domain index for various domain pool schemes. The use of the

domain pools 𝐷2 and 𝐷3 compared with domain pool 𝐷1 improve PSNR about 3 dB. Chart (1) shows

PSNR versus required bits for the 512 × 512 pepper image for various domain pool selection schemes.

Chart (2) shows computational complexity versus PSNR for 512 × 512 pepper image for various domain

pool selection schemes.

Figure 3 shows reconstructed image of 𝐷1 (PSNR =28/7) which bits equal to 4 and the number of

operations for a range is equal to 16.

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online)

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/04/jls.htm

2015 Vol. 5 (S4), pp. 814-818/Zahedi and Dehghani

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 816

Figure 4 shows the reconstructed image of 𝐷2which here bits equal to 4 and the number of operations for

a range is equal to 16 (PSNR =31/5414).

Figure 5 shows the reconstructed image of 𝐷3which here bits equal to 4 and the number of operations for

a range is equal to 16 (PSNR =31/8007).

Scaling and offset values and domain matching index for each range block to store the scaling and 7 bits

for offset will be used. About 11 bits are required to store the scaling and offset for each range.

Table 1: PSNR versus the number of operations and bits for 𝑫𝟏

The number of bits The number of operations PSNR (dB)

4 16 28/7019

6 64 31/1142

8 256 32/3269

10 1024 33/9178

12 4096 35/1994

Table (2): PSNR versus the number of operations and bits for 𝑫𝟐

The number of bits The number of operations PSNR (dB)

4 16 31/5414

6 64 32/2570

8 256 33/4192

10 1024 34/4737

12 4096 35/3878

Table 3: PSNR versus the number of operations and bits for 𝑫𝟑

The number of bits The number of operations PSNR (dB)

4 16 31/8007

6 64 32/9107

8 256 33/8138

10 1024 34/6674

12 4096 35/5566

Chart 1: PSNR versus the bits required for the

512 × 512 pepper image for various domain pool

schemes

Chart 2: The number of operations for each

rangeversus PSNR for the 512 × 512 pepper

image for various domain pool schemes

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online)

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/04/jls.htm

2015 Vol. 5 (S4), pp. 814-818/Zahedi and Dehghani

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 817

Figure 3: Reconstructed image by domain pool

 𝑫𝟏

(PSNR= 28/7019 dB, bits= 4, computation= 16)

Figure 4: Reconstructed image by domain pool

 𝑫𝟐

(PSNR= 31/5414 dB, bits= 4, computation= 16)

Figure 5: Reconstructed image by domain pool 𝑫𝟑

(PSNR= 31/8007 dB, bits= 4, computation= 16)

Chart 1 shows that at least 7 bits are necessary for 𝐷1to store the domain index but only 4 bits are needed

for 𝐷3to improve the same PSNR (31/8 dB). So full bits for each block are reduced from 18 to 15.It

means about 3 bits will be stored for each range block for the proposed scheme and the compression rate

will be increased to 20%.

Chart 2 shows that about 160 comparisons is necessary for 𝐷1, but we need only 16 comparisonsfor 𝐷3to

achieve the same PSNR (PSNR=31/8 dB). Therefore, the computational load will be reduced to 90%.

CONCLUSION
Here a corrective scheme for the domain pool was offered. Results of experiments on the famous images

show that the proposed method will lead to a better performance in terms of distortion rate and much less

computational load is needed, which consequently increases the speed of compression.

Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online)

An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/04/jls.htm

2015 Vol. 5 (S4), pp. 814-818/Zahedi and Dehghani

Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech) 818

REFERENCES
Barnsley MF (1993). Fractal Image Compression (A. K. Peters, Ltd., Wellesly, MA).

Dipankar Dasgupta, German Hernandez and Fernando Niño (2010). An Evolutionary Algorithm for

Fractal Coding of Binary Images. IEEE Transactions on Evolutionary Computation 4(2).

Fisher Y (1995). Fractal Image Compression: Theory and Applications (Springer-Verlag, New York,

USA).

Hamzaoui R, Saupe D and Hiller M (2001). Distortion minimization with fast local search for fractal

image compression. Journal of Visual Communication and Image Representation (12) 450–468.

Kin-Wah Ching Eugene and Ghim-Hwee Oug (2006). A Two pass Improved Encoding Scheme for

Fractal Image Compression. Proceedings of the International conference on Computer Graphics, Imaging

and Visualization, IEEE 214.

Lai CM, Lam KM and Siu WC (2009). Improved Searching Scheme for Fractal Image Coding.

Electronics Letters 38(25) 153-54.

Lee CK and Lee WK (1998). Fast fractal image block coding based on local variances. IEEE

Transaction on Image Processing 7(6) 888-891.

Mitra SK, Murthy CA and Kundu MK (2008). Technique for fractal image compression using genetic

algorithm. IEEE Transaction on Image Processing 7 586–592.

Polvere M and Nappi M (2000). Speed-Up in Fractal Image Coding: Comparison of Methods. IEEE

Transactions on Image Processing 9(6) 1002-1009.

Tong C and Pi M (2010). Fast Fractal Image compression using Adaptive Search. IEEE Transactions on

Image Processing 10(9) 1269- 1277.

Yong Ho Moon, Hyung Soon Kim and Jae Ho Kim (2000). A fast fractal decoding algorithm based on

the selection of an initial image. IEEE Transaction on Image Processing 9(5) 941-945.

