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ABSTRACT 

In this paper we have proposed a new approach for the penalization of the exact 𝑙1 penalty function 
method. Then this method will be used for solving nonlinear constrained optimization problems with both 

equality and inequality constraints. However 𝑙1 exact penalty functions are nonsmooth functions. In the 

proposed method a new penalty trust region based on Radial Basis Functions for smoothing the 𝑙1 exact 

penalty function is introduced. Penalty function is replaced by a smooth surrogate model to analyze its 
global convergence. At each iteration, the trial step is determined such that either the value of the 

objective function or the measure of the constraint violation is sufficiently reduced. This method is 

particularly suitable for problems which contain a large number of constraints and decision variables. The 
numerical results are presented for some standard test problems. 
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INTRODUCTION 

The class of nonlinear constrained optimization problems is an important class of problems with a 
broadrange in engineering, scientific, and operational applications. This paper introduces a new method 

which belongs to the class of trust-region methods via Radial Basis functions (RBFs) for solving the 

following constrained optimization problem: 
min
𝑥

𝑓(𝑥)

𝑠. 𝑡.
𝑔𝑚  𝑥 ≤ „0        𝑚 ∈ 𝐼1 = {1,2, … , 𝑀}
𝑙(𝑥) = 0            𝑙 ∈ 𝐼2 = {1,2, … , 𝐿}

  (1) 

where 𝑥 ∈ 𝑅𝑛 , 𝑓: 𝑅𝑛 → 𝑅 and 𝑔𝑚 (𝑚 ∈ 𝐼1), 𝑙(𝑙 ∈ 𝐼2):𝑅𝑛 → 𝑅 are not necessarily differentiable. 

In general, one can not solve (1) directly or explicitly. Instead, an iterative method is used that solves a 

sequence of simpler, approximate subproblem to generate a approximate solution, {𝑥𝑘} of (1). The basic 

and classical constrained optimization methods include penalty function method and the Lagrangian 
method. The sequential quadratic programming method (SQP) is a well known and powerful constrained 

optimization method as well, which is a local search method able to find a local optimal solution. 

We focus on using the traditional and effective quadratic penalty function framework as (Nocedal and 
Wright, 1999): 

min
𝑥

𝑄(𝑥, 𝜇) = 𝑓(𝑥) + 𝜇{ 𝐿
𝑙=1 𝑙

2(𝑥) +  𝑀
𝑚=1 max(𝑔𝑚 (𝑥),0)}, (2) 

For solving (1), where 𝜇 is the penalty parameter. Because (2) is not necessarily a smooth function, when 

constructing an algorithm to solve general problem (1) by (2), some difficulties may be faced. 

Trust–region algorithms for the constrained optimization problems are a class of numerical algorithms for 
finding an approximate solution to problem (2). They are iterative methods that compute at every iteration 

𝑘, a trial step by solving a trust–region subproblem. The step 𝑠𝑘  is then tested using the merit function (2). 

The step 𝑠𝑘  is accepted only if 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘  is a better approximation to the solution  
The main difficulty associated with the penalty functions is the choice of the penalty parameter which can 

inordinate by increase. Another concern is the effect of the nondifferentiability of some popular exact 

penalty functions for which the penalty functions is allowed to increase for a limited number of iterations. 
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The basic and classical constrained optimization methods include penalty function method, the 

Lagrangian method (Luenberger and Ye, 2007) and SQP (Boggsal and Tolle, 1995). These methods have 

been developed under the assumption of uniqueness of the local optimal solution; that is, these are local 
search methods which can find a local optimal solution. Many constrained optimization methods that 

utilize meta–heuristics have been proposed in recent years (Coello, 2002; Lu and Chen, 2008). Some are 

able to search for optimal solutions globally and have been used to successfully solve some constrained 
optimization problems (Liang and Suganthan, 2006; Takahama and Sakai, 2006) Generally, in meta–

heuristics techniques, interaction among all search points is mainly used as the driving force. Therefore, 

these methods have the drawback that once all of the search points are attracted to one search point, 

diversity is lost and stagnation of the search occurs. The stagnation tends to occur in high dimensional 
optimization problems which have multi-peaked objective functions, and the meta-heuristics may not 

perform well in such problems. Zenios et al., (1993) and Pinar and Zenios (1994) gave a smoooh exact 

penalty function for convex constrained optimization problems, which can be applied to obtain a good 
approximate optimal solution to (1). Nondifferentiable exact penalty functions were introduced for the 

first time by Eremin and Mazurov (1979) and Zangwill (1967). In almost all of the introduced penalized 

approaches the notion of convexity plays a dominant role. 
Recently, derivative–free trust region algorithms have been used increasingly (Conn et al., 1997; 

Kurokawa, 2009; Powell, 2002; Zhao et al., 2006). A common approach is to combine conventional 

algorithm such as genetic algorithm or pattern search with surrogate models to solve expensive problems. 

For instance, Booker et al., (1998) and Jones et al., (1998) proposed a method based on Kriging basis 
functions. In recent years, nonlinear optimization is perhaps one of the most common reasons for using 

derivative–free methods. Forming surrogate models by interpolation has been proposed by Winfield 

(1973) and reviewed by Powel (2002) and Conn et al., (1997). Wild et al., (2008) constructed a surrogate 
model based on RBFs. 

In this study, we consider use of a trust–region method based on RBFs, which is able to obtain a global 

optimal solution without being trapped at global optimal solutions. The underlying idea of this method is 

that there are two goals, one is improving the feasibility and the other is reducing the value of objective 
function rapidly so that building a relation between reduction the value of objective function and 

improving the feasibility. 

This study is aimed to minimize the penalty function (2) which is a non smooth function of several 
decision variables. Continuously differentiable functions with zero gradient is the standard condition for 

optimization techniques (Kolda et al., 2003). But, here we can not use this theory exactly. Thus, 

derivative–free algorithms, which have a long history and are currently growing rapidly can be more 
effective because they extends only with value of function (Gray et al., 2004; Regis and Shoemaker, 

2007; Wild et al., 2008; Zhao et al., 2006). 

In our approach, at each iteration, we construct the surrogate model by RBFs interpolation within a trust 

region instead of penalty function (2) to find the new trial minimum point. When the current trial point is 
not enough close to a local minimum, we update the interpolation points and construct a new model by 

RBFs. This model is considered instead of the penalty function on a suitable trust region. 

The main idea is to find interpolation points in the trust region for building a polynomial interpolation for 
objective function anyway that we can obtain strict local minimum point. 

In the previous methods, whenever a trial point did not decrease the objective function as expected, one of 

the interpolation points was replaced by another evaluated point. In our approach, all the interpolation 
points can be changed at each iteration. Under proper assumptions, the proposed method will guarantee 

global convergence. Also, models based on RBFs have been shown to be of interest for global 

optimization. 

The paper is organized as follows: In section 2, the surrogate model is introduced. In section 3, the RBFs 
are described. In section 4, we present derivative–free optimization. Section 5, gives a summary of the 

surrogate model based on RBFs. In section 6, the algorithm is introduced and its convergence properties 

are established. Numerical results for some examples are reported in the last section. 
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Throughout the paper ||. || denotes for Euclidean norm and for simplicity we also use subscripts to denote 

functions evaluated at iterates, for example, 𝑓𝑘 = 𝑓(𝑥𝑘), 𝑔𝑚 = 𝑔(𝑥𝑚 ) and 𝑙 = (𝑥𝑙). 

Surrogate Model 

We consider the following unconstrained optimization problem 

min
𝑥∈𝑅𝑛

𝑄(𝑥, 𝜇), 

where 𝑄:𝑅𝑛 → 𝑅 is a merit function which is necessarily non smooth. In this paper, we propose the 

smooth surrogate model, which is minimized instead of 𝑄(𝑥, 𝜇) more easily. 

We remark that surrogate modeling is referred to as a technique that uses the sample points to build a 
surrogate function, which is sufficient to predict the behavior of the objective function. 

Quadratic Surrogate Model 

Powell (2002) and Conn et al., (1996, 1997) proposed the surrogate model as follows: 

𝑆𝑚(𝑥𝑘 + 𝑠, 𝜇) = 𝑄𝑘 + 𝐺𝑘
𝑇𝑠 +

1

2
𝑠𝑇𝐻𝑘𝑠, 

where 𝐺𝑘 = ∇𝑄(𝑥𝑘 , 𝜇) and 𝐻𝑘 = ∇2𝑄(𝑥𝑘 , 𝜇). When 𝑄 is twice differentiable and admits a Hessian 

matrix 𝐻 which will always be positive definite. 

The goal is to construct the surrogate model 𝑆𝑚(𝑥𝑘 , 𝜇) for the objective function 𝑄, which is 

computationally simple and inexpensive with good analytical properties. It could be used in optimization 

because of its simplicity and a suitable algebraic form. 

To build a quadratic model, we define the trust region 𝐵𝑘 : = {𝑥 ∈ 𝑅𝑛 : ||𝑥 − 𝑥𝑘 || ≤ Δ𝑘}. At each iteration 

of the surrogate method, the solution of optimization problem inside 𝐵𝑘  (Nelder and Mead, 1965; Conn et 

al., 2000), as 

min
𝑠

𝑆𝑚(𝑥𝑘 , 𝜇)𝑠. 𝑡. ||𝑠|| ≤ Δ𝑘 ,  (3) 

is needed, for some trust region with radius Δ𝑘 ≥ 0. We compute 𝑄(𝑥𝑘 + 𝑠,𝜇), and define: 

 𝜌𝑘 =
𝑄(𝑥𝑘 ,𝜇)−𝑄(𝑥𝑘+𝑠𝑘 ,𝜇)

𝑆𝑚𝑘(𝑥𝑘 ,𝜇)−𝑆𝑚𝑘(𝑥𝑘+𝑠𝑘 ,𝜇 )
. (4) 

Given the standard trust region 0 ≤ 𝜂0 ≤ 𝜂1 < 1, 0 < 𝛾0 < 1 < 𝛾1 , 0 < Δ𝑘 ≤ Δmax  and 𝑥𝑘 ∈ 𝑅𝑛 , we 

define a model 𝑆𝑚𝑘  on 𝐵𝑘 , and compute a step 𝑠𝑘  such that 𝑥𝑘 + 𝑠𝑘 ∈ 𝐵𝑘 , which sufficiently reduces the 

model 𝑆𝑚𝑘 . 

By accepting the trial point 𝑥𝑘 , we compute 𝑄(𝑥𝑘 + 𝑠𝑘 , 𝜇) and 𝜌𝑘  using (4), then update the surrogate 

model parameters as follows,  

0

1
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k
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and 

Δ𝑘+1 =

 
 

 
Δ𝑘 𝜂 0 ≤ 𝜌𝑘 < 𝜂 1 ,

min{𝛾1Δ𝑘 ,Δmax } 𝜌𝑘 ≥ 𝜂 1 ,

𝛾0Δ𝑘 𝜌𝑘 < 𝜂0 .
  

The following assumptions were considered in this section: 

1. 𝑄(𝑥, 𝜇) is a two times differentiable function. 

2. {𝑥𝑘} is a bounded sequence. 

Suppose the these assumption holds. Let 𝑠𝑘  be a solution of subproblem (3). The following lemma, which 

can be obtained from the well-known result is needed (Powell; 2002). 

Lemma 2.1 subproblem (3) has a sufficient decrease condition if, 

𝑆𝑚𝑘(𝑥𝑘 , 𝜇) − 𝑆𝑚𝑘(𝑥𝑘 + 𝑠𝑘 , 𝜇) ≥
𝑐

2
||𝐺𝑘 ||min(Δ𝑘 ,

||𝐺𝑘 ||

||𝐻𝑘 ||
), 

for some constant 𝑐 ∈ (0,1). We also assume that 
||𝐺𝑘||

||𝐻𝑘 ||
= +∞ when 𝐻𝑘 = 0. 
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Note that now the main questions are as follows: How to build surrogate models, and how to evaluate the 

accuracy of surrogate models? 

Radial Basis Functions Interpolation 
RBFs are widely used for scattered data interpolation. A multivariate interpolation can be stated as 

follows. Given data (𝑥𝑖 ,𝑄𝑖), 𝑖 = 1, … , 𝑁, with 𝑥𝑖 ∈ 𝑅𝑛 , 𝑄𝑖 ∈ 𝑅, we find a continuous function 𝑆𝑚(𝑥, 𝜇) 

such that 𝑆𝑚(𝑥𝑖 , 𝜇) = 𝑄𝑖 , 𝑖 = 1, … , 𝑁. 

The function 𝑆𝑚(𝑥, 𝜇) is assumed to be given by a linear combination of RBFs, that is, 

𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇) =  

𝑁

𝑖=1

𝜆𝑖𝜑(||𝑠 − 𝑦𝑖 ||) + 𝑉(𝑠), 

where 𝜑(||𝑠 − 𝑦𝑖 ||) is the RBFs centered at the point 𝑦𝑖 . Note that we have 𝑉(𝑠) =  𝑀
𝑗=1 𝛾𝑗 𝜈𝑗 (𝑠), where 

𝜈 = {𝜈1(𝑠), … , 𝜈𝑀(𝑠)} is an order basis for the linear space Π𝑀−1
𝑛

, the space of polynomials of total 

degree less than or equal to 𝑀 − 1, with 𝑛 variables and {𝜆𝑗 }𝑗=1
𝑁  are the unknown RBF coefficients. In the 

following conditions, the approximation 𝑆𝑚(𝑥, 𝜇), 
𝑆𝑚(𝑥𝑖 , 𝜇𝑖) = 𝑄𝑖 ,        𝑖 = 1, … , 𝑁, (5) 

 𝑁
𝑖=1 𝜆𝑖𝜈𝑘(𝑠𝑖) = 0,        𝑘 = 1, … , 𝑀,

 (6) 

the conditions (5) and (6) can be written as matrix, 

.
0T

V f

V





     
     

     
 (7) 

Which coefficients 𝜆 is the undetermined coefficient vector. The sake of clarity, the matrix   in the 

form: 

1 1 1

1

(|| ||) (|| ||)

,

(|| ||) (|| ||)

N

N N N N N

x x x x

x x x x

 

 


  
 

 
 
   



 



 

It can be seen (7) is well-posed if the coefficient matrix is non-singular (Buhmann, 2003). Micchell 

(1986) proved that the interpolation problem in equation (7) is solvable when the following two 
conditions are met: 

1. The points {𝑥𝑗 }𝑗=1
𝑁  are distinct. 

2. The RBFs used are strictly conditionally positive definite. 

Definition 3.1 Let 𝜈 be a basis for 𝛱𝑀−1
𝑛 , with the convention that 𝜈 = ∅ if 𝑀 = 0. A function 𝜙 is said to 

be conditionally positive definite (CPD) of order 𝑀 if for all the distinct points 𝑌 ⊂ 𝑅𝑛  and all 𝜆 ≠ 0, 

satisfying  𝑁
𝑖=1 𝜆𝑖𝜈(𝑥𝑖) = 0, the quadratic form  𝑁

𝑖 ,𝑗=1 𝜆𝑗𝜙(||𝑥𝑖 − 𝑥𝑗 ||)𝜆𝑗  is positive (Buhmann, 2003; 

Wendland, 2005). 

Some of the most popular (twice continuously differentiable) RBFs are shown in table 1, 

 

Table 1: Some examples of popular RBFs and their orders of conditional positive definiteness 

𝝓(𝒓) Order Parameters      Example 

𝑟𝛽  2 𝛽 ∈ (2,4) 𝐶𝑢𝑏𝑖𝑐, 𝑟3  

(𝑐2 + 𝑟2)𝛽  2 𝑐 > 0, 𝛽 ∈ (1,2) 
MqI, (𝑐2 + 𝑟2)

3
2  

−(𝑐2 + 𝑟2)𝛽  1 𝑐 > 0, 𝛽 ∈ (0,1) 
MqII,−(𝑐2 + 𝑟2)

1
2 

(𝑐2 + 𝑟2)−𝛽  0 𝑐 > 0, 𝛽 > 0 
Inv. Mq, (𝑐2 + 𝑟2)−

1
2 

𝐸𝑥𝑝(−𝑐2𝑟2) 0 𝑐 > 0 Gaussian,𝐸𝑥𝑝(−𝑐2𝑟2) 
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For fixed coefficients 𝜆, these radial basis functions are all twice continuously differentiable. Therefore 

we have relatively simple analytic expressions for the gradient: 

∇𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇) =  

𝑁

𝑖=1

𝜆𝑖𝜑′(||𝑠 − 𝑦𝑖 ||)
𝑠 − 𝑦𝑖

||𝑠 − 𝑦𝑖 ||
+ ∇𝑉(𝑠), 

and similar hessian (∇2𝑆𝑚𝑘). 

 

Derivative Optimization 
In this section, we present an algorithm for reducing penalty function of several variables. Derivative-free 

optimization method has a long history and we refer the reader to (Conn et al., 1997) for further 

references. 

We suppose that 𝑄(𝑥, 𝜇) is a function from 𝑅𝑛  into 𝑅 which is not necessarily smooth. The algorithm is 
based on approximating the penalty function by a positive definite quadratic model. The main idea is to 

use the available values of the penalty function and building a quadratic model by interpolating within a 

trust region. 

Suppose that in the current 𝑥𝑘 , we have the sample points 𝑌 = {𝑦1 = 0, 𝑦2, … , 𝑦𝑁}, with 𝑦𝑖 ∈ 𝑅𝑛 , 

𝑖 = 1, … , 𝑁, it contains the points closest to 𝑥𝑘  in current iterate. We wish to construct a quadratic model 

of the form as, 

𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇) = 𝑄𝑘 + 𝐺𝑘
𝑇𝑠 +

1

2
𝑠𝑇𝐻𝑘𝑠. (8) 

Where the vector 𝐺𝑘 ∈ 𝑅𝑛  and 𝐻𝑘 ∈ 𝑅𝑛×𝑛  be a symmetric matrix. By imposing the interpolation 

condition in what follows: 

𝑆𝑚𝑘(𝑥 + 𝑦𝑖 , 𝜇) = 𝑄(𝑥 + 𝑦𝑖 ,𝜇),        𝑖 = 1, … , 𝑁. (9) 

It is needed to evaluate 𝑆𝑚𝑘(𝑥 + 𝑠) on 𝑁 =
1

2
(𝑛 + 1)(𝑛 + 2) points to find an approximating quadratic 

form, where 𝑛 is number of variables (Andrew et al., 2009; Bjorkman and Holmstrom, 2000; Conn et al., 

1997). 

We consider {𝜑𝑖(. )}𝑖=1
𝑁  as a basis for the linear space of 𝑛-dimensional quadratic function. The quadratic 

function (8) can be expressed as, 

𝑆𝑚𝑘(𝑥 + 𝑦𝑗 , 𝜇) =  

𝑁

𝑖=1

𝜆𝑖𝜑𝑖(𝑦
𝑗 ),        𝑗 = 1, … , 𝑁 

for some coefficients 𝜆𝑖  that could be determined from the interpolation condition (9), 

 

𝑁

𝑖=1

𝜆𝑖𝜑𝑖(𝑦
𝑗 ) = 𝑄(𝑥𝑘 + 𝑦𝑗 , 𝜇),        𝑗 = 1, … , 𝑁. 

𝜆𝑖  are unique if the determinant of the below matrix is nonzero 
1

1 1

1

( ) ( )

.

( ) ( )

N

N

N N

y y

y y

 

 

 
 
 
 
 



 



 

Then, iteratively we optimize and update the surrogate model 𝑆𝑚𝑘  to reach a satisfactory solution. 

Surrogate Methods Based on Radial Basis 

In this section, the relevance of the surrogate methods and RBFs is considered, Suppose: 

𝑆𝑚(𝑥 + 𝑠, 𝜇) =  

𝑁

𝑖=1

𝜆𝑖𝜑𝑖(𝑠) +  

𝑀

𝑘=1

𝛾𝑘𝜈𝑘(𝑠) = Λ
𝑇
Φ(𝑠) + Γ

𝑇𝑉(𝑠), 

Model is twice differentiable and is important for the convergence part of our method (Conn, Toint, 1996; 

Qeuvray, 2005). This study considers interpolation condition at the points of 𝑌: 

𝑆𝑚𝑘(𝑥𝑘 + 𝑦𝑖) = 𝑓(𝑥𝑘 + 𝑦𝑖),        ∀𝑦𝑖 ∈ 𝑌. 
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Let Φ ∈ 𝑅𝑁×𝑁 , 𝑉 ∈ 𝑅𝑁×𝑀  be the matrices defined by Φ𝑖𝑗 = 𝜑(||𝑦𝑖 − 𝑦𝑗 ||) and 𝑣𝑖𝑗 = 𝜈𝑖(𝑦
𝑗 ). Then the 

interpolation condition can be expressed as ΦΛ + 𝑉Γ = 𝑄. By using RBFs we get the following linear 
system of equations 

1 1
,

0T T T

V Q V Q

V V V V Q 

              
             

                  
 (10) 

with the solution Γ = (𝑉𝑇Φ
−1𝑉)−1𝑉𝑇Φ

−1𝑄, Λ = Φ
−1(𝑄 − 𝑉Γ). 

Sufficient condition for the solvability of system (10) is that the points in 𝑌 are distinct and yield a 𝑉𝑇  of 

full column rank. 

Suppose that 𝑉𝑇 = 𝑄𝑅 and hence 𝑅 ∈ 𝑅(𝑛+1)×(𝑛+1). If 𝑍 is an orthonormal basis for the null space of 𝑉 

(Benzi et al., 2005), using the condition (6), it follows that Λ ∈ ℵ(𝑉). Therefore, Λ = 𝑍𝑤. According to 

(10), ΦΛ + 𝑉𝑇Γ = 𝑄. Multiplying this equation by 𝑍𝑇 from left gives, 𝑍𝑇ΦΛ + 𝑍𝑇𝑉𝑇Γ = 𝑍𝑇𝑄. Keeping 

in mind that 𝑍 is an orthonormal basis for the null space 𝑉, we obtain 𝑍𝑇𝑉𝑇Γ = 0. Hence 

𝑍𝑇Φ𝑍𝑤 = 𝑍𝑇𝑄. (11) 

Now, we can obtain 𝑤 from (11) and thus we can compute the vector Λ By introducing the RBFs based 

on cubic spline (Andrew et al., 2009; Buhmann, 2003) which is the smoothest functions interpolation and 

conditional positive definiteness, then 𝑍𝑇Φ𝑍 is also positive definite, using Cholesky factorization: 

𝑍𝑇Φ𝑍 = 𝐿𝐿𝑇 , for a nonsingular lower triangular 𝐿 and replacing in (11), 𝐿𝐿𝑇𝑤 = 𝑍𝑇𝑄 ⇒ 𝑤 =
(𝐿𝐿𝑇)−1𝑍𝑇𝑄, so that 

||Λ|| = ||𝑍𝑤|| = ||𝑍𝐿𝑇−1
𝐿−1𝑍𝑇𝑄|| ≤ ||𝐿−1||2|𝑄|, 

for procure , we have ΦΛ + 𝑉𝑇Γ = 𝑄 and using the QR factorization, ΦΛ + 𝑄𝑅Γ = 𝑄, premultiplying 

this equation by 𝑄𝑇 , results, 𝑅Γ = 𝑄𝑇(𝑄 − ΦΛ), and because Λ = 𝑍𝑤 concludes 

𝑅Γ = 𝑄𝑇(𝑄 −Φ𝑍𝑤).
 (12) 

In this section, we discuss a method of creating surrogate models. For this purpose Φ must be 

conditionally positive definite of order at least 2 (table1), and 𝑉 ∈ Π2
𝑛

 be linear. The RBFs interpolation is 

defined such that at all sample points the equation is established. Note that Φ must be conditionally 

positive definite of order at least 2 (table1) (Wild et al., 2008). 

The RBF coefficients 𝜆𝑖  and 𝜈𝑖  must be bounded in magnitude. Define 𝑦𝑖  to be 𝑖th point in 𝑌, that is in 

the vicinity of the trust region. However for 𝑛 ≥ 1 condition (9) is not sufficient for the existence and 
uniqueness of the interpolant, and to guarantee the good quality of the model. Geometric conditions on 

the set 𝑌 are required to ensure the existence and uniqueness of the interpolant (Conn et al., 2008). 

The process can be summarized as follows: the study has chosen sample points in the vicinity of the trust 

region so that 𝑛 + 1 offinely independent points and generate the other interpolation points. 

The cubic spline 𝜑(𝑟) = 𝑟3 in dimension 𝑛 is unisolvent on points 𝑌 = {𝑦1, … , 𝑦𝑁} if the matrix, 

 𝜑(||𝑦𝑖 − 𝑦𝑗 ||)         1 ≤ 𝑖, 𝑗 ≤ 𝑁, 

is invertible for any choice of 𝑁 distinct points 𝑦1 , … , 𝑦𝑁 ∈ 𝑌. 

Definition 5.1 𝑌 is unisolvent for 𝛱𝑀
𝑛  if there exists a unique polynomial in 𝜋𝑀

𝑛  of lowest possible degree 

with interpolation points of 𝑌. 

Unisolvent systems of RBFs are widely used in interpolation because they guarantee a unique solution to 
the interpolation problem. This is equivalent to the interpolation system (10) which is non-singular if the 

interpolation point set 𝑌 is unisolvent. 

The collection of 𝑛 + 1 distinct points will uniquely determine a polynomial of lowest possible degree in 

Π
𝑛

. In this section we describe an algorithm to find 𝑛 + 1 interpolation points which are offinelly 

independent points. We denote 𝐷: = {𝑑𝑖 ∈ Δ𝑘 |𝑄(𝑥𝑘 + 𝑑𝑖)𝑖𝑠𝑘𝑛𝑜𝑤𝑛}. Algorithm 5.1 shows that how to 

obtain 𝑛 + 1 offinelly interpolation points. 

Algorithm 5.1 Finding n+1 offinely independent points: 

Step0: Input 𝑌, constants 0 < 𝛾0 ≤ 𝛾1, Δ𝑘 ∈ [0,Δ𝑚𝑎𝑥 ]. 
Step1: Define 𝐷 = {𝑑1,𝑑2, … , 𝑑|𝐷|} ∈ 𝑅𝑛  such that 𝑥𝑖 = 𝑥𝑘 + 𝑑𝑖  are close to 𝑥𝑘 . 
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Step2: We consider 𝑍 as 𝐼𝑛 . 

Iteration 𝑘 ≥ 1 

Step3: Consider 𝑑𝑖 ∈ 𝐷 

If ||𝑑𝑖|| ≤ 𝛾1 .Δ𝑘 , define 𝑢 =
𝑑𝑖

𝛾0Δ𝑘
, 

If ||𝑝𝑟𝑜𝑗𝑍
𝑢 || ≥ 𝛾0 , {𝑑𝑖} ∈ 𝑌, 

Using the Gram-Schmidt, we obtain orthonormal basis for 𝑌 as 𝑍 , update 𝑍 = 𝑍 . 
If |𝑌| = 𝑛 + 1 stop. 

Increment 𝑖 by one, and go to Step 3. 

Step4: If |𝑌| < 𝑛 + 1, choose 𝑑𝑖 ∈ 𝐷 

If ||𝑑𝑖|| ≤ 2Δ𝑚𝑎𝑥 , define 𝑢 =
𝑑𝑖

𝛾0Δ𝑘
 

If ||𝑝𝑟𝑜𝑗𝑍
𝑢 || ≥ 𝛾0 , set {𝑑𝑖} ∈ 𝑌  

Using the Gram-Schmidt process, we obtain an orthonormal basis for 𝑌 as 𝑍  
Step5: Update 𝑍 = 𝑍  Increment 𝑖 by one, and go to Step 4. 

But when the number of points is 𝑛 + 1, solution of the system (10) is just interpolation for linear 

functions and coefficient Λ = ∅. To build the surrogate model for nonlinear functions, we add some new 

points. Algorithm 5.2 shows how we can obtain "well independent" additional sample points in the trust 

region. 
Algorithm 5.2 Finding additional independent points: 

Step0: Input 𝑌, 𝑝𝑚𝑎𝑥 =
(𝑛+1)(𝑛+2)

2
, 𝐷 = {𝑑1,𝑑2, … , 𝑑|𝐷|}, 𝜃 > 1. 

Iteration 𝑘 ≥ 1 

Step1: Consider 𝑑𝑖 ∈ 𝐷 
| |1 20

Π ,
1 1 1 1

Y

T i
i

y y y d
d D

  
 

 
  

Step2: Find the orthogonal basis 𝑍 for null space Π . 

Step3: Build the interpolation matrix by using the cubic spline function at sample points 𝑌, 

Φ

0

Φ
Φ

Φ

j

j

d

new T

d

 
  
  

 

Step4: Multiplying Φ𝑛𝑒𝑤  by 𝑍 and 𝑍𝑇, concludes, 

Φ

0

Φ
Φ

Φ

j

j

T T

dT

new T T

d

Z Z Z Z
P Z Z

Z Z

 
 
 




 

Step5: 𝑃 is positive definite for cubic spline function 𝜑(𝑟) = 𝑟3, note that if 𝑃 must be positive definite, 

the points 𝑌 must be distinct. 

Step6: 𝑃 = 𝐿𝐿𝑇 , if diagonal entries of 𝐿𝑇  are positive, 𝑑𝑗  add to sample points 𝑌. If |𝑌| = 𝑝𝑚𝑎𝑥  Stop. 

Increment 𝑖 by one, and go to Step 1. 

Step7: If there are no adaptable point in 𝑌 to independent, enlarged region as Δ𝑘 = 𝜃.Δ𝑘 , and go to Step 

0. 

Consider 𝑍𝑇Φ𝑛𝑒𝑤 𝑍 = 𝐿𝐿𝑇 , if all diagonal entries of 𝐿𝑇  are positive, then 𝑑𝑗  is added to the interpolation 

set 𝑌. This procedure continues until |𝑌| =
(𝑛+1)(𝑛+2)

2
. Also the points 𝐷 = {𝑑1, … , 𝑑|𝐷|} are smartly 

chosen around the trial point 𝑥𝑘  by a random process. 

Optimization Surrogate on Radial Basis Functions (OSRB) 

This section discusses the details of the OSRB algorithm (Abramson et al., 2008; Forrester and Keane, 
2009). This paper is different from previous ones, by using a cubic spline function constructed via the 

surrogate model sake optimization. 
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Given 𝑁, a set of distinct interpolation points 𝑌 = {𝑦1 = 0, 𝑦2, … , 𝑦𝑁}, which 𝑦𝑖 ∈ 𝑅𝑛 , 𝑖 = 1 …𝑁, we 

obtain the surrogate model for 𝑄 on 𝑌. Algorithm 6.1 shows how surrogate model is constructed by 

RBFs. 

Algorithm 6.1 Iteration 𝑘 of a derivative free surrogate model: 

Step0: Input 0 ≤ 𝜂0 < 𝜂1 ≤ 1, 𝛾0 < 1 < 𝛾1, 0 < Δ1 ≤ Δ𝑚𝑎𝑥 , 𝜀 > 0 and 𝜇 > 0. 

We assume that trial point 𝑥𝑘  is given. 

Iteration 𝑘 ≥ 1 

Step1: From algorithm 5.1 and 5.2 find independent points that is denoted by 𝑌. 

Step2: Obtain surrogate model 𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇) byusingtheRBF’sdescribedinSection5. 

Step3: While ||∇𝑆𝑚𝑘 || > 𝜀 

3.1 Obtain a step 𝑠𝑘  by solving: min{𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇𝑘); 𝑥𝑘 + 𝑠 ∈ 𝐵(𝑥𝑘 ,Δ𝑘)}. 
3.2 Evaluate 𝑄(𝑥𝑘 + 𝑠𝑘 , 𝜇𝑘) and update the trial point according to the ratio 𝜌𝑘 , 

𝑥𝑘+1  =  

𝑥𝑘 + 𝑠𝑘 𝜌𝑘 ≥ 𝜂1

𝑥𝑘 + 𝑠𝑘 𝜌𝑘 > 𝜂0

𝑥𝑘 𝑜. 𝑤,
  

Δ𝑘+1 =  
𝑚𝑖𝑛{𝛾1Δ𝑘 ,Δ𝑚𝑎𝑥 } 𝜌𝑘 ≥ 𝜂1

𝛾0Δ𝑘 𝜌𝑘 < 𝜂0

Δ𝑘 , 𝜂0 < 𝜌𝑘 ≤ 𝜂1,

  

Step4: Choose new penalty parameter, 𝜇𝑘+1 > 𝜇𝑘  and 𝑥𝑘+1 = 𝑥𝑘 ; 

In step 1, the interpolation point set 𝑌 = {𝑦1 = 0, … , 𝑦|Y|} is determinate and is linearly independent. In 
step 2, we consider how to construct a model and to obtain parameters of RBFs model from (11), and 

(12). In step 3, the algorithm has criteria for model 𝑆𝑚𝑘(𝑥𝑘 + 𝑠, 𝜇𝑘) and updates parameters trust region 

method. We finds the candidate step 𝑠𝑘  by approximately solving the subproblem (3). In this paper, we 

solve subproblem (3) by using the Fmincon in Matlab. 

Convergence Properties of OSRB Algorithm 

In this section, we discuss the convergence properties of the algorithm. The trust region algorithm ensures 

the penalty function 𝑄(𝑥, 𝜇) is approximated within a suitable neighborhood of 𝑥, 

𝐿(𝑥0): = {𝑦 ∈ 𝑅𝑛 |||𝑥 − 𝑦|| ≤ Δmax , ∀𝑥;𝑄(𝑥, 𝜇) ≤ 𝑄(𝑥0, 𝜇)}, 
Assumption 6.1 The penalty function 𝑄(𝑥, 𝜇) is bounded below on 𝐿(𝑥0) and 𝑆𝑚(𝑥, 𝜇) is twice 

continuously differentiable. 

Theorem 6.1 Let {𝛥𝑘} and {𝑥𝑘} be sequences generated by OSRB Algorithm. Then, 𝑙𝑖𝑚
𝑘→∞

𝛥𝑘 = 0. 

Proof. After the last successful iteration, there is an infinite number of iterations that are either acceptable 

or unsuccessful, and in either case the trust region is reduced. If 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘  is obtained so that 

𝑄(𝑥𝑘+1, 𝜇) ≤ 𝑄(𝑥𝑘 , 𝜇), then Δ𝑘  is never increased for sufficiently large 𝑘, so Δ𝑘  is decreased at least 

once every 𝑛 iterations by a factor of 0 < 𝛾 < 1, thus Δ𝑘  convergence to zero. 

The statement of theorem 6.1 gives a natural stopping criterion for OSRB algorithm. It results from the 

updating of the trust region at the k iteration. Surrogate model 𝑆𝑚𝑘  is made so that, 

𝑆𝑚(𝑠𝑘 , 𝜇𝑘) − 𝑆𝑚(0, 𝜇𝑘 ) = 𝐺(0)𝑇𝑠𝑘 +
1

2
𝑠𝑘

𝑇𝐻𝑘 (0)𝑠𝑘 ,                                                ∎ 

where 𝐺𝑘 = ∇𝑄(𝑥𝑘 , 𝜇) and 𝐻𝑘 = ∇2𝑄(𝑥𝑘 , 𝜇). 

By Assumption 6.1 there exists 𝑀 > 0 such that ||∇2𝑆𝑚𝑘 || < 𝑀, based on Assumption 6.1, we have the 

following lemma. 
Lemma 6.1 Suppose that assumption 6.1 holds. Then, 

𝑆𝑚(0, 𝜇𝑘) − 𝑆𝑚(𝑠𝑘 , 𝜇𝑘 ) ≥
1

2
||𝐺𝑘 ||min{Δ𝑘 ,

||𝐺𝑘 ||

𝐻𝑘
}. 

Proof. If |𝑠𝑘 | = || −
𝐺𝑘

𝐻𝑘
|| ≤ Δ𝑘 , then the quadratic subproblem (8) can be resolved, 

𝑆𝑚(𝑠𝑘 , 𝜇𝑘) = 𝑆𝑚(0, 𝜇𝑘 ) −
𝐺𝑘

𝐻𝑘
𝐺𝑘 +

1

2
(−

𝐺𝑘

𝐻𝑘
)𝑇𝐻𝑘 (−

𝐺𝑘

𝐻𝑘
), 
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given the cubic spline is twice continuously differentiable, 𝐺𝑘
𝑇𝐻𝑘𝐺𝑘  is positive definite. We know the 

model is convex along direction 𝑠𝑘 . Next, 

𝑆𝑚(0, 𝜇𝑘) − 𝑆𝑚(𝑠𝑘 , 𝜇𝑘 ) =
||𝐺𝑘 ||2

𝐻𝑘
−

1

2

||𝐺𝑘 ||2

𝐻𝑘
≥

1

2
||𝐺𝑘 ||min{Δ𝑘 ,

||𝐺𝑘 ||

||𝐻||𝑘
}, 

lemma 6.1 guarantees that the OSRB Algorithm will sufficient decrease at iteration k. 

Numerical Results 

Here, the proposed model is demonstrated for solving a numerical example. Consider the following 

optimization problem: 

min
𝑥

𝑓(𝑥) = −0.25𝑥1
2 + 1.2𝑥2

2 + 0.1𝑥1𝑥2 + 2𝑥1 − 2𝑥2;

𝑠. 𝑡.
𝑔1(𝑥) = 𝑥1 − 𝑥2 + 2 ≥ 0
𝑔2(𝑥) = −𝑥1 + 2𝑥2 + 2 ≥ 0
𝑔3(𝑥) = 𝑥1𝑥2 ≥ 0

1 𝑥 = 𝑥1 + 2𝑥2 − 3

 

As 𝑓(𝑥) and 𝑔3(𝑥) are nonconvex. This problem has a optima point 𝑥∗ = (0,1.5)𝑇. The best optimal 

solution using the proposed method is equal to (2.1087399153𝑒 − 12, 1.499957965), which seems to 

be the same as the optimal value. 

We present a set of nonlinear programming problems from (Hock and Schittkowski, 1981; Schittkowski, 

1987) which have been solved by the OSRB algorithm proposed to accommodate practical experiment to 
show the success of proposed method. Notice that the interpolation points are choosed so that 

interpolation matrix (10) always invertible even the trust region is very small. 

We have employed the Fmincon routine from Matlab which is corresponding to surrogate model. The 
starting points are randomly chosen in the trust region. We solve problem (1) with equality and inequality 

constraints to show the efficiency of the proposed method. 

For the nonlinear programming problems we use the following OSRB parameters: Δ1 = max(1, ||𝑥0||), 

Δmax = 10−3Δ1 , 𝜅𝑓 = 10−10 , 𝜅𝑑 = 10−10 , 𝜂0 = 0, 𝜂1 = 10−3, 𝛾0 = 0.1, 𝛾1 = 10, and termination 

criterion ||∇𝑆𝑚(𝑥𝑘 , 𝜇)|| < 1. 𝑒 − 7. 

The numerical results for the test problems are listed in table 2. The header of the columns mean that: 𝑛 

and 𝑚 are number of variables and constraints respectively, Δ𝑘  is the radius of final trust region and 

𝑓𝑂𝑆𝑅𝐵  is the final value of the objective function value at the final iteration. 

 

Table 2: Numerical results 

Problem 𝒏 𝒎 𝚫𝒌 𝒇𝑶𝑺𝑹𝑩 Problem 𝒏 𝒎 𝚫𝒌 𝒇𝑶𝑺𝑹𝑩 

HS1 2 1 2.23E-9 1.42E-12 HS30 2 7 10 1 

HS2 2 1 1.13E-19 5.04267 HS32 3 5 1E-7 1 

HS3 2 1 1.4E-8 1.1E-14 HS53 5 9 .47E-8 4.0929 

HS4 2 2 8.82E-7 2.66666714 HS60 3 4 3.2E-6 0.32567 

HS6 2 1 1.83E-7 7.78E-17 S217 2 3 1E-9 -0.8 

HS10 2 1 1E-8 -1 S226 2 4 1E-7 -0.49998 

HS11 2 1 8.6E-8 -8.49851 S227 2 2 1.33E-08 1 

HS12 2 1 1E-8 -30 S228 2 2 2.99E-4 -3 

HS14 2 2 2.82E-7 1.3934650 S230 2 2 1.91E-09 0.375 

HS16 2 5 2.2E-9 0.25 S234 2 5 1E-4 -8 

HS17 2 5 2.23E-9 1 S248 3 2 1E-8 -0.79998 

HS20 2 5 2.1E-7 38.1987 S249 3 1 1.73E-5 1 

HS21 2 5 1.41E-8 -99.959 S262 4 8 2E-3 -9.9998 

HS22 2 2 2.82E-7 1 S263 4 4 1.73E-5 -1 

HS23 2 7 6.3E-9 2 S264 4 3 3.5E-7 -44 
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In Table 2, the problems are numbered in the same way as in Hock and Schittkowski (Hock and 

Schittkowski, 1981) and Schittkowski (Schittkowski, 1987). For example, HS6 means problem 6 in Hock 

and Schittkowski collection (Hock and Schittkowski, 1981) and S248 means problem 248 in Schittktwski 
collection (Schittkowski, 1987). We present some classical numerical examples which are solved by 

using the proposed algorithm in table 2. 

 

CONCLUSION  

For the 𝑙1 exact penalty function with a large number of equality and inequality nonlinear constrained 

optimization, we propose a new smoothing algorithm based on the trust-region method by RBFs, and 

discuss global convergence. At each iteration, a surrogate model is constructed instead of the penalty 
function by RBFs. The most advantage of the proposed algorithm is that the management of the 

interpolation points is easier, so that the system (10) always has a unique solution. It focuses on 

improving feasibility or reducing of the objective function, while the value of the penalty parameter is not 
overally increased. We have tested a set of problems from (Hock and Schittkowski, 1981; Schittkowski, 

1987. The preliminary numerical results show that the new method is effective. Future work perspective 

will be concerned with the algorithm performance. More numerical experiments, especially for large scale 

problems, should be done. The idea of the new algorithm is worthy to use free-penalty method of 
constrained optimization problems by this method in the future. 
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