EVALUATION OF THE EFFECT OF 15% CARBAMIDE PROXIDE ON THE COLOR OF NANOFILLED RESIN COMPOSITE FILTEK Z-250XT AND STAINING SUSCEPTIBILITY OF THIS COMPOSITE AFTER BLEACHING INVITRO

Azadeh Ghaemi1 and *Mohsen Shahmoradi2
1Department of Operative Dentistry, Ahvaz Jundishapur University of Medical Sciences, Iran
2Department of Dental, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
*Author for Correspondence

ABSTRACT
Aim: the present research aims to examine effect of bleaching with 15% Carbamide Peroxide and rate of nonfilled composite Filtek Z-250XT (3m-ESPE, St Paul, MN, USA) and Color Stability of this composite in color solutions. Method: 42 composite discs by 10 mm diameter and 1 mm thickness were prepared. 21 discs were subjected to bleaching via 15% Carbamide Peroxide and 21 discs were kept in distilled water at room temperature. Colorimetric was fulfilled before and after this stage via spectrophotometer under three components of ΔL, Δa and Δb for each sample. Then, the samples were set in color solutions including coffee, cola and grape juice for two weeks and then colorimetric was applied. Analysis: Mann withney, one-way ANOVA and Tukey HST were considered to observe effect of bleaching on color of composites, difference between bleached and non-bleached composite in color stability, and extent of effect of these three solutions on color of composites at Pvalue≤0.05. Results: bleaching has not had a significant effect on nonfilled composite Filtek Z-250XT (3m-ESPE, St Paul, MN, USA) color. Color stability of composite was not increased after bleaching. Coffee has had the highest effect on changing color of composites. Significance: nonfilled composite Filtek Z-250XT(3m-ESPE, StPaul, MN, USA) after bleaching is not subjected to color stability.

Keywords: Bleaching, Composite Resin, Stain Susceptibility, Carbamide Peroxide15%

INTRODUCTION
With regard to increasing need of patients to beauty treatments, tooth-colored restorative materials are demanded by patients. Despite improvement in quality of these materials in recent years, huge attempts have been made to provide the materials that have the highest durability and beauty and the lowest need to replacement (Kroeze et al., 1990). One of the reasons for replacement of tooth-colored restorations lies on discoloration of these restorations after working for a certain period in the mouth (Wilson et al., 1997). Intrinsic and extrinsic factors contribute in discoloration of resin restorations (Um and Ruyter, 1991). Intrinsic reasons for discoloration of resin restorations include resin or filler structure and their incomplete polymerization (Um and Ruyter, 1991). The extrinsic factors for discoloration of resin restorations include absorption of pigments in the materials such as Tea, coffee, nicotine (Um and Ruyter, 1991). Surface characteristics such as levels of coarseness can affect color stability of restorations (Asmussen and Hansen, 1986; Dietschi et al., 1994). Effective factors in surface coarseness of resin restorations include size and type of their filler, composition of resin matrix, finishing and polishing method and bleaching. Bleaching by dentist is one of the safe beauty treatments in clinic at higher Hydrogen peroxide concentrations (Haywood, 1992; Haywood, 1994). During bleaching, bleaching materials in addition to teeth will be in contact with the restorations existing in mouth. Burgers& cooley stated that surface roughness, hardness, and morphology of resin-based composites increase after bleaching (Cooley and Burger, 1991). In another study on Surface roughness of nanofill and nanohybrid composite resin and ormocer-based tooth-colored restorative materials, the surface roughness has increased (Gurgan and Yalcin, 2007). Turker & Biskin (2003) stated that increasing surface roughness of composite resins can increase their color stability. The present research seeks to examine coffee, red wine and cola on Microhybrid Composite Filtek Z-250 (3m-ESPE, St Paul, MN, USA) with or without contact with 15%
carbamide peroxide bleaching. Presumption of this study lies on this fact that coloring materials have the same effect on composite and bleaching or non-bleaching composite has not any effect on color stability of composite.

MATERIALS AND METHODS

Filtek Z-250XT (3M-ESPE, ST Paul, MN, USA) is the resin composite used in this study, which is a nanofilled composite resin. Opalescence 15% CP (Ultradent, StJordan, UT, USA) has been the bleaching material used in this study, that the chemical compositions for these materials have been represented in table 1.

Table 1: Composition of main materials that been used

<table>
<thead>
<tr>
<th>Material</th>
<th>Manufacturing factory</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z250XT composite</td>
<td>3M-ESPE</td>
<td>Filler : ≤ 3 µm, 20nm</td>
</tr>
<tr>
<td></td>
<td>ST Paul, MN, USA</td>
<td>82 % wt</td>
</tr>
<tr>
<td></td>
<td>Shad A2</td>
<td>Matrix : Bis GMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis-EMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEGDMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEGDMA</td>
</tr>
<tr>
<td>Opalescence PF15%</td>
<td>Ultradent</td>
<td>15% CP</td>
</tr>
<tr>
<td></td>
<td>Gordan, UT, USA</td>
<td>3% Potassium Nitraate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 2% Flouraidecarbopol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golucerin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flauring agents</td>
</tr>
</tbody>
</table>

Preparation of Samples

42 composite discs to the dimension of 10 mm and thickness of 1 mm in a PTFE (Polytetrafluoroethylene) sheet covered with polyester tape (Mylar, HenrySchein, Melville, NY, USA) were made. Then, resin composites were polymerized via dental light cure Valo (Ultra dent product south Jordan, UT, USA) under standard state for 20s with light intensity of 1000 MW/CM² from upward. The light coming from dental light cure was controlled via radiometer (Kerr, Demetron, and Orange, CA, USA) after lighting. To achieve a flat and standard surface, a high level of samples on Silicon Carbide Powder 1200 grit was sprayed with water.

Then, the samples were kept at room temperature for two weeks. At this stage, color variables of each sample (L*, a*, b*) were measured via Spectrophotometer (Dr.langmicrocolor, brave instrument Belgium) and mean was reported in form of raw data.

Bleaching Regime

Samples were divided into two groups. One group named non-bleaching group was kept in distilled water at room temperature for two weeks and another group name bleaching group was undergone bleaching regime. Surface of the samples in the second group was subjected to bleaching material (Opalescence PF15%) during 14 days for 7 hours in a day and then the samples were washed with water after being subjected to bleaching material after ending 7 hours and the samples were kept in distilled water at room temperature at the rest of hours in a day and color of the samples in both groups was measured at the end of two weeks.

Staining Procedure

Each group was divided into three sub-groups in random and each sub-group was subjected to a coloring material for two weeks. The used coloring materials include:
1-coffee: 5 gram equivalent to approximately one teaspoon of espresso (Nescafe Classic, Nestle, Istanbul, Turkey) at 200cc boiled water
2-cola
3-red wine (San Ich, Tehran, Iran)
Color Measurement Method
The color variables (L^*, a^*, b^*) were measured via spectrophotometer (langmicro color, brave instrument Belgium) at each sample. Quality of color was elaborated via international system (Commission de l’Eclairage) and three agents ($L\Delta a, Ab, \Delta L$) compared to standard conditions, spectrophotometer was calibrated via standard white card before measurement and measurement was repeated for three times for each sample.

RESULTS AND DISCUSSION

Results
Mann withney indicated that bleaching has not effect on color of composite (p-value=0.652). Further, Mann withney indicated that there is no difference on color stability in bleaching and non-bleaching composite (p-value=0.215).

Table 2: Mean of color change in bleaching and non-bleaching composite groups

<table>
<thead>
<tr>
<th>Group</th>
<th>ΔE</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite after bleaching</td>
<td>1.95</td>
<td>1.95</td>
</tr>
<tr>
<td>Composite in water</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>bleaching composite</td>
<td>8.2</td>
<td>4.03</td>
</tr>
<tr>
<td>non-bleaching composite</td>
<td>6.72</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Yet, one-way ANOVA and Tukey HST indicated a significant difference on influence of coloring solution on composite, such that coffee has had the highest effect on bleaching and non-bleaching composite rather than cola and red wine.

Table 3: Comparison of effect of coloring solutions on non-bleached composite

<table>
<thead>
<tr>
<th>Group</th>
<th>ΔE</th>
<th>SD</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cola</td>
<td>5.4734</td>
<td>3.6829</td>
<td>11.81</td>
<td>2.29</td>
</tr>
<tr>
<td>red wine</td>
<td>9.5318</td>
<td>4.8926</td>
<td>15.79</td>
<td>5.37</td>
</tr>
<tr>
<td>Coffee</td>
<td>11.6923</td>
<td>2.04671</td>
<td>14.89</td>
<td>9.48</td>
</tr>
</tbody>
</table>

Table 4: Comparison of effect of coloring solutions on bleached composite

<table>
<thead>
<tr>
<th>Group</th>
<th>ΔE</th>
<th>SD</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cola</td>
<td>2.2643</td>
<td>1.17139</td>
<td>3.39</td>
<td>.82</td>
</tr>
<tr>
<td>red wine</td>
<td>5.6974</td>
<td>3.78412</td>
<td>11.31</td>
<td>2.58</td>
</tr>
<tr>
<td>Coffee</td>
<td>11.5396</td>
<td>2.2964</td>
<td>14.57</td>
<td>8.84</td>
</tr>
</tbody>
</table>

Values of ΔE_{ab} greater than 3 were used as positive clinical criteria for color detection in this study; this value equaled to 11.61, 3.86 and 7.614 for coffee, cola and red wine, respectively.

Discussion
Bleaching has appeared as one of the common treatments in dentistry clinics. since avoidance from contact of bleaching material in different bleaching methods is not possible via Restorative Dental Materials, in the present research an attempt was made to examine effect of bleaching on nanofilled composite as well as amount of color stability of this composite after bleaching in three coloring solutions including cola, red wine and coffee. Yu et al., (2009) stated that composite after bleaching than non-bleaching can be more likely influenced of color. They announce this influence due to surface changes in composite in contact with bleaching material (Yu et al., 2009). Studies indicate that effect of bleaching materials on composite restorations surface depends on bleaching material and contact time (Polydorou et al., 2006; Polydorou et al., 2007). According to SEM and profilometry studies, it has

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
been displayed that 10% and 16% carbamide peroxide tooth-whitening gels can increase porosity of hybrid and microfilled composite (Tu’Rker and Biskin, 2002; Tu’Rker and Biskin, 2003). Anyhow, in a study on effect of 6% of hydrogen peroxide on hybrid composite with periods kept in saliva, it has been displayed that saliva can reduce effectiveness of hydrogen peroxide on surface characteristics of restoration materials through development of a protective layer (Schemehorn et al., 2004). According to the study by baily & swift, 10 % carbamide peroxide after a four-week regime therapy in addition to increase of surface roughness of restoration materials on microfilled samples has raised crack (Bailey and Swift, 1992). Wang et al., (2011) stated that effect of bleaching material on surface of restorative materials regarding time and type of material can be different, such that effect of bleaching materials on each of composites has been different in their study. Implant material which was used in this study has PH equal to 6.7, that such PH cannot have acidic features and cannot cause rise of surface roughness at the surface of composite. Further, time of utilization can be another reason for lack of influence of these materials on restoration surface. In the studies with huge influence of carbamide peroxide as bleaching material, longer contact time has been reported (Schemehorn et al., 2004; Bailey and Swift, 1992). In the present research, 15% carbamide peroxide has not had any effect on color of composite. Canay and Cehreli, (2003) indicated that use of 15% carbamide peroxide or 30% hydrogen peroxide can change color of composites at the range of ΔE between 2 to 11 (Campos et al., 2003). Li et al., (2009) mentioned significant changes in color of nano-hybrid composite after contact with 15% carbamide peroxide. In another study, it has been declared that high Hydrogen peroxide concentrations in contact with the materials containing high resin matrix can raise color change (Hubbezoglu et al., 2008). In general, color change in restorative materials has been found due to Surface oxidation of the pigment and amine content, and this can raise color change in composites over the time.

Degree of conversion has been mentioned as another effective factor in durability of color of composites in contact with bleaching materials, under which more color change will occur in self-cured adhesive composite resins than light-cured adhesive composite resins (Rosentritt et al., 2005). This study indicated that composite Filtek Z-250XT (3m- ESPE, St Paul, MN, USA) at different coloring solutions indicates different color stability. In this study, coffee has had the highest effect than other coloring materials. In the study by Bagheri and Burrow (2005), coffee has had the highest effect on color stability. Some studies have known effectiveness of coffee and tea the same (Yazici et al., 2007). Further, in a study by Bullem et al., (2009), effect of tea has been mentioned higher than effect of coffee (Cigdem et al., 2009). In the present research, coffee, red wine and cola have had the highest effect, respectively.

Conclusion

Despite this fact that bleaching materials can affect surface features of composites and increase surface roughness, this effect is not in a way to have a significant effect on color stability of nanofilled composite.

ACKNOWLEDGEMENT

This paper is issued from thesis of (Mohsen Shahmoradi). This work was financially supported by grant: (93136) from Vice- Chancellor for Research Affairs of Ahvaz Jundishapur University of Medical Sciences.

REFERENCES

Research Article

