Computing New Version of PI Index for Rooted Graphs

Bagher Jafarzadeh
Department of Mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
*Author for Correspondence

Abstract
In mathematics and in particular in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root. Also, for an edge $e=ab$ of a graph G, let W_{ab}^G be the set of vertices closer to a than to b. That is

$$W_{ab}^G = \{u \in V(G) | d(u, a) < d(u, b)\}$$

We call a graph G distance-balanced, if $|W_{ab}^G| = |W_{ba}^G|$ holds for any edge ab of G. In this paper, some properties of rooted and distance balanced graphs about new version of PI index is computed.

Keywords: Rooted Graph, Molecular Graphs, Distance-balanced Graph, New Version of PI Index

Introduction
In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound (Hendrik et al., 2002). Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure (Hall et al., 1976).

Topological descriptors are derived from hydrogen-suppressed molecular graphs, in which the atoms are represented by vertices and the bonds by edges. The connections between the atoms can be described by various types of topological matrices (e.g., distance or adjacency matrices), which can be mathematically manipulated so as to derive a single number, usually known as graph invariant, graph-theoretical index or topological index (González-Díaz et al., 2007; González-Díaz et al., 2008). As a result, the topological index can be defined as two-dimensional descriptors that can be easily calculated from the molecular graphs, and do not depend on the way the graph is depicted or labeled and no need of energy minimization of the chemical structure.

The simplest topological indices do not recognize double bonds and atom types (C, N, O, etc.) and ignore hydrogen atoms ("hydrogen suppressed") and defined for connected undirected molecular graphs only (King, 1983). More sophisticated topological indices also take into account the hybridization state of each of the atoms contained in the molecule. Hundreds of indices were introduced. The Hosoya index is the first topological index recognized in chemical graph theory, and it is often referred to as the topological index (Hosoya, 1971). Other examples include the Wiener index, Randić’s molecular connectivity index, Balaban’s J index (Katritzky et al., 2002), and the TAU descriptors (Pal et al., 1988; Pal et al., 1989). The extended topochemical atom (ETA) indices have been developed based on refinement of TAU descriptors (Roy et al., 2003).

Global and Local Indices
Wiener index are global (integral) indices to describe entire molecule, Bonchev and Polansky introduced local (differential) index for every atom in a molecule (Hosoya, 1971). Since then Wiener index is widely used in QSPR/QSAR/QSTR studies. This index is defined as below:

$$W(G) = \sum d(i, j),$$

where $d(i, j)$ is the size of minimum length of paths between vertices i and j. The Wiener index $W = W(G)$ was first defined for a tree $G = T$ by the following expression:
In the following proposition, the Co index for rooted and distance balanced graph (G, z) is defined by the following expression:

\[\text{CO}(G) = \sum_{e \in E(G)} |n_e(u)| - |n_e(v)| \]

Through this paper, some properties about CO-PI index of molecular graphs is included. Our notation is standard and is similar to Handbook of Molecular Descriptors (Hendrik et al., 2002).

RESULTS AND DISCUSSION
In this section we will use some definitions and theorem from Hall et al., (1976) to calculate the Co-PI index of graphs.

Definition. Rooted graph: In mathematics and in particular in graph theory, a rooted graph is a graph in which one vertex has been distinguished as the root.

Both directed and undirected versions of rooted graphs have been studied, and there are also variant definitions that allow multiple roots.

Definition. Distance-balanced graph: For an edge e = ab of a graph G, let \(W_{ab}^G \) be the set of vertices closer to a than to b. That is

\[W_{ab}^G = \{ u \in V(G) \mid d(u, a) < d(u, b) \} \]

We call a graph G distance-balanced, if \(|W_{ab}^G| = |W_{ba}^G| \) holds for any edge ab of G.

Definition. Suppose that G and H are graphs with disjoint vertex sets. Following Doslic (Doslic, (2008)), for given vertices \(y \in V(G) \) and \(z \in V(H) \) a splice of G and H by vertices y and z, \((G \ast H)(y, z) \), is defined by identifying the vertices y and z in the union of G and H. Similarly, a link of G and H by vertices y and z is defined as the graph \((G \ast H)(y; z) \) obtained by joining y and z by an edge in the union of these graphs.

In the following proposition, the Co-PI index for rooted and distance balanced graph \((G \ast H)(a; b) \) is computed.
\textbf{Research Article}

\textbf{Proposition.} Assume that \(G \) and \(H \) are rooted graphs with respect to the rooted vertices of \(a \) and \(b \), respectively. Also \((G \cdot H)(a; b) \) is distance-balanced. Then the Co-PI index of graphs \(G \) and \(H \) are equal to:

\[
\text{Co-PI}(G) = (|V(H)| - 1) \quad \text{and} \quad \text{Co-PI}(H) = (|V(G)| - 1).
\]

where, for each arbitrary \(e = uv \in E(G) \) and \(f = xy \in E(H), A \), \(B \) are equal to this following sets:

\[
\begin{align*}
A &= \{ e = uv \in (G \cdot H)(a; b) \func{d}(v; a) < \func{d}(u; a) \}; \\
B &= \{ e = uv \in (G \cdot H)(a; b) \func{d}(v; r) = \func{d}(u; r) \};
\end{align*}
\]

\textbf{Proof.} Suppose that \(r = a = b \). We partition edges of \((G \cdot H)(a; b) \) into the following two subsets:

\[
\begin{align*}
A &= \{ e = uv \in E(G:H) \func{d}(v; r) < \func{d}(u; r) \}; \\
B &= \{ e = uv \in E(G:H) \func{d}(v; r) = \func{d}(u; r) \}.
\end{align*}
\]

Since \(G \) and \(H \) are rooted graphs with respect to the rooted vertices of \(a \) and \(b \), respectively, and \((G \cdot H)(a; b) \) is distance-balanced, thus by Tavakoli, Proposition 2.3 (Tavakoli et al., 2013), it is obvious that:

\[
n^G_v(e) - n^G_u(e) = \begin{cases}
|V(H)| - 1, & \text{if} \ d(v, a) < d(u, a) \\
0, & \text{if} \ d(v, a) = d(u, a)
\end{cases}
\]

and

\[
n^H_x(e) - n^H_y(e) = \begin{cases}
|V(G)| - 1, & \text{if} \ d(y, b) < d(x, b) \\
0, & \text{if} \ d(y, b) = d(x, b)
\end{cases}
\]

Therefore, by definition of Co-PI index, we have, Co-PI index of graphs \(G \) and \(H \) are equal to:

\[
\text{Co-PI}(G) = (|V(H)| - 1) \quad \text{and} \quad \text{Co-PI}(H) = (|V(G)| - 1) \quad \text{or} \quad |B|.
\]

\textbf{ACKNOWLEDGEMENT}

This work is supported for Research project entitled: "NEW VERSION OF PI INDEX AND EXAMINATION OF ITS PROPERTIES FOR GRAPHS", from "Mahshahr Branch, Islamic Azad University, Mahshahr, Iran". The author would like to thank for supporting this project.

\textbf{REFERENCES}

\copyright \textregistered \ 2014 | Centre for Info Bio Technology (CIBTech)
Research Article

