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ABSTRACT 

 In this paper, a set of orthogonal shifted Chebyshev polynomials on [0, 𝑙] and a set of orthogonal rational 

functions on [0, +∞) are considered. Moreover, a new operational matrix method based on the 

operational matrices of derivative for the shifted Chebyshev polynomials and rational Chebyshev 
functions is proposed to solve the second order one dimensional non-homogeneous hyperbolic telegraph 

equations with initial-boundary conditions on the long time period. In this way, we approximate the 

solution of the proposed equation with a combination of the shifted Chebyshev polynomials and the 
rational Chebyshev functions. Some numerical examples are included for demonstrating the efficiency of 

the method. The results reveal that our method is very effective.  

 
Keywords: Partial Differential Equations, Telegraph Equation, Shifted Chebyshev Polynomials, Rational 
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INTRODUCTION 
As we know, many applied problems in science and engineering arise in unbounded domains. In recent 

years, different spectral methods have been proposed for solving such problems, such as the Hermite and 

Laguerre spectral methods (Bao and Shen, 2005; Funaro and Kavian, 1991; Guo, 1999). In (Guo et al., 
2000), Guo et al., have proposed a method which by mapping a problem under consideration in an 

unbounded domain to a problem in a bounded domain, and then using suitable Jacobi polynomials 

approximates the solutions of the resulting problems. Another approach which usually is used for solving 

these problems is based on replacing the infinite domain with [−𝑙, 𝑙] and the semi-infinite interval with 

[0, 𝑙] by choosing 𝑙, sufficiently large. This method is named as the domain truncation (Boyd, 2001). In 

(Boyd, 1987), Boyd defined new spectral basis functions on the semi-infinite interval, by mapping them 

to the Chebyshev polynomials, namely rational Chebyshev functions. In (Dehghan and Fakhar-Izadi, 
2011), Dehghan and Fakhar-Izadi applied the rational Tau and collocation methods to solve the nonlinear 

ordinary differential equations on semi-infinite intervals. 

A well-known partial differential equation is the telegraph equation. We consider the following form of 

the this equation:  

 𝐮𝐭𝐭(𝐱, 𝐭) + 𝟐𝛂𝐮𝐭(𝐱, 𝐭) + 𝛃𝟐𝐮(𝐱, 𝐭) = 𝐮𝐱𝐱(𝐱, 𝐭) + 𝐟(𝐱, 𝐭), 𝐱 ∈ [𝟎,𝐛], 𝐭 ∈ [𝟎, +∞),        (1) 

which for known real constants α and β is a second order linear hyperbolic telegraph equation in one-
dimensional on semi-infinite time. This equation is commonly used in the study of wave propagation of 

electric signals in a cable transmission line and also in wave phenomena (El-Azab andEl-Gamel, 2007; 

Meredith, 1988), and has also been used in modelling the reaction-diffusion processes in various branches 
of engineering sciences and biological sciences by many researchers, for instance see (Roussy and Pearcy, 

1995) and references therein. Moreover it represents a damped wave motion for α > 0 and β = 0. In 

recent years, much attention has been given in the literature to the development, analysis and 

implementation of stable methods for the numerical solution of second-order hyperbolic equations, 
especially, telegraph equation, which is very important in engineering sciences. We advice readers to see 

(Dehghan, 2005; Gao and Chi, 2007; Mohanty et al., 1996) and references therein. 

Approximation by orthogonal families of basic functions has found wide applications in science and 
engineering. The main advantages of using an orthogonal basis are that the problem under consideration 

reduces to a system of linear or nonlinear algebraic system of equations. Thus this fact not only simplifies 

the problem enormously, but also speeds up the computational work during the implementation. This 
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work can be done by truncating the series expansion in orthogonal basis function for the unknown 

solution of the problem and in using the operational matrices. 

 The operational matrix of derivative is given by:  

 
𝑑Φ(𝑥)

𝑑𝑥
= 𝐷Φ(𝑥),          (2) 

where Φ(𝑥) = [𝜙𝑜(𝑥),𝜙1(𝑥),… ,𝜙𝑁(𝑥)]𝑇, and 𝜙𝑖(𝑥) (𝑖 = 0,1,… ,𝑁) are orthogonal basis functions with 

respect to a specific weight function on a certain interval and 𝐷 is the operational matrix of derivative of 

Φ(𝑥). Notice that 𝐷 is a constant (𝑁 + 1) × (𝑁 + 1) matrix.  

The aim of this paper is to use appropriate basis functions for solving the telegraph equation (1) with two 

types of initial-boundary conditions:  

 
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢(0, 𝑡) = 𝑔0(𝑡),

lim
𝑡→+∞

𝑢(𝑥, 𝑡) = 𝑓1(𝑥), 𝑢(𝑙, 𝑡) = 𝑔1(𝑡),       (3) 

 or  

 
𝑢(𝑥, 0) = 𝑓0(𝑥), 𝑢(0, 𝑡) = 𝑔0(𝑡),

𝑢𝑡(𝑥, 0) = 𝑓1(𝑥), 𝑢(𝑙, 𝑡) = 𝑔1(𝑡),
      (4) 

where 𝑡 ∈ [0, +∞). 

For this purpose, we first introduce two orthogonal bases of functions on the intervals [0, 𝑙] and [0, +∞), 
generated by the shifted Chebyshev polynomials and rational Chebyshev functions, respectively. Then we 

describe some properties of the shifted Chebyshev polynomials and obtain a new operational matrix of 

derivative for these basis functions and also present some useful properties of the rational Chebyshev 

functions which are used further in this paper. Next a new operational matrix method based on the 
operational matrices of derivative for the shifted Chebyshev polynomials and rational Chebyshev 

functions is proposed to solve the above mentioned problems. 

This paper is organized as follows: in section 2 we present the shifted Chebyshev polynomials and their 
properties. In section 3 we introduce the rational Chebyshev functions and also describe some useful 

properties of these basis functions. In section 4 we propose a new computational method based on the 

operational matrices of derivative for the shifted Chebyshev polynomials and rational Chebyshev 

functions. In section 5 the proposed method is applied to several numerical examples. 

Chebyshev and Shifted Chebyshev Polynomials 

 Let Tn (z) be the Chebyshev polynomial of degree n. We recall that Tn (z) is the eigenfunction of the 

singular Sturm-Liouville problem  

 (1 − z2)y′′ − zy′ + n2y = 0, n = 0,1,2, . . .  ,−1 < 𝑧 < 1. (5) 

 The Chebyshev polynomials are orthogonal with respect to weight function w(z) =
1

 1−z2
 on [−1,1]. 

The orthogonality of these polynomials is given by:  

  ‍
1

−1
Tm (z)Tn (z)w(z)dz =

πγm

2
δmn , (6) 

 where  

 γm =  
2, m = 0,
1, m ≥ 1,

  

 and δmn  denotes the Kronecker delta. 
These basis polynomials can be determined with the recurrence relation (Atkinson and Han, 2009):  

 
T0(z) = 1,    T1(z) = z,

Tn+1(z) = 2zTn (z) − Tn−1(z), n ≥ 1  .
 (7) 

 For practical use of these polynomials on the interval of interest [0, b], it is necessary to shift their 

domain of definition by means of the following substitution (Mason and Handscomb, 2003):  

 z =
2x

b
− 1,    x ∈ [0, b]. (8) 

 The shifted Chebyshev polynomials Tn
∗(x) of degree n on the interval [0, b] are given by:  

 Tn
∗(x) = Tn (z) = Tn (

2x

b
− 1). (9) 

 By using (9) and (7), we may deduce the recurrence relation for Tn
∗(x) in the following form:  
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T0
∗(x) = 1,    T1

∗(x) =
2x

b
− 1,

Tn+1
∗ (x) = (

4x

b
− 2)Tn

∗(x) − Tn−1
∗ (x), n ≥ 1  .

 (10) 

 The orthogonality condition for these shifted polynomials with respect to the weight function ws(x) =
b

2 x(b−x)
 on the interval [0, b] is given by:  

  ‍
b

0
Tm
∗ (x)Tn

∗(x)ws(x)dx =
bπγm

4
δmn . (11) 

 Any function f ∈ Lw s
2 [0, b], may be expanded by shifted Chebyshev polynomials as:  

 f(x) =  ‍+∞
j=0 cjTj

∗(x), (12) 

 where  

 cj =
(f,Tj

∗)w s

∥Tj
∗∥w s

2 =
4

bπγm
 ‍

b

0
f(x)Tj

∗(x)ws(x)dx. (13) 

 If the infinite series in (12) is truncated, then it can be written as:  

 f(x); ‍N
j=0 cjTj

∗(x) = CTΦ(x), (14) 

 where T denotes transposition and C and Φ(x) are N + 1 column vectors given by:  

 C ≜ [c0, c1,… , cN ]T , 
  

 Φ(x) ≜ [T0
∗(x), T1

∗(x),… , TN
∗(x)]. (15) 

  

Lemma 2.1 Let Tm
∗ (x) be the Chebyshev polynomials shifted into [0, b]. Then we have  

 
d

dx
Tm
∗ (x) =  ‍m−1

k=0
k+m odd

4m

bγk
Tk
∗(x). (16) 

  
  

Proof. Suppose that the Chebyshev expansion of function f(z) be as  

 f(z) =  ‍∞
k=0 f k Tk(z), (17) 

 Then 
d

dz
f(z) can be represented as (Canuto et al., 1988)  

 
d

dz
f(z) =  ‍∞

k=0 f k
(1)

Tk(z), (18) 

 where  

 f k
(1)

=
2

γm
 ‍m−1

p=k+1
p+k odd

pf p , (19) 

 Now by taking f(z) = Tm (z) in (17), we have f i = δim , consequently  

 f k
(1)

=  
2m

γk
, m + kisodd, k ≤ m− 1,

0, otherwise,

  (20) 

 As a result equation (18) becomes  

 
d

dz
Tm (z) =  ‍m−1

k=0
k+m odd

2m

γk
Tk (z), (21) 

 By substituting z =
2x

b
− 1 in Equation (21), we have  

 
d

dx
Tm
∗ (x) =  ‍m−1

k=0
k+m odd

4m

bγk
Tk
∗(x). (22) 

  
  
Theorem 2.2 Let Φ(x) be the shifted Chebyshev polynomials vector defined in (15). Then the derivative 

of the vector Φ(x) can be expressed by  

 
dΦ(x)

dx
= DsΦ(x), (23) 

 where Ds  is the (N + 1) × (N + 1) operational matrix of derivative defined as follows  
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 Dij =  

4i

bγ j
j = 1,2,⋯ , i − 1, and(i + j)odd,

0, otherwise.

  (24) 

  

 Proof. The ith element of vector Φ(x) in (15) can be written as  

 Φi(x) = Ti−1
∗ (x) (25) 

 By differentiating this relation and substituting 
d

dx
Ti−1
∗ (x) from relation (16), we have  

 
dΦi (x)

dx
=

d

dx
Ti−1
∗ (x) =  ‍i−2

j=0

j+i−1odd

4(i−1)

bγ j
Tj
∗(x), (26) 

 So its shifted Chebyshev polynomials expansion has the following form:  

 
dΦi (x)

dx
=  ‍i−1

j=1

j+iodd

4i

bγ j
Φj(x), (27) 

 Now, by using relations (23) and (27), we obtain:  

 Dij =  

4i

bγ j
j = 1,2,⋯ , i − 1, and(i + j)odd,

0, otherwise,

  (28) 

 this leads to the desired result.  

 Rational Chebyshev Functions 

 The rational Chebyshev functions denoted by Rn (x) are generated from Chebyshev polynomials by 

employing the mapping ϕ(x) =
x−L

x+L
 as:  

 Rn (x) = Tn (ϕ(x)) (29) 
 where L is a constant parameter. 

The presented mapping for every fixed L maps the semi-infinite interval [0,∞) into [−1,1]. There are 

some ways for optimizing the positive map parameter L (Guo et al., 2002).  

These basis functions can be defined as the following recurrence relations:  

 

R0(x) = 1,

R1(x) =
x−L

x+L
,

Rn+1(x) = 2  
x−L

x+L
 Rn (x) − Rn−1(x), n ≥ 1.

 (30) 

 Thus, Rn (x) is the nth eigenfunction of the singular Sturm-–Liouville problem (Guo et al., 2002):  

 (x + L)
 x

L

d

dx
 (x + L) x

d

dx
Rn (x) + n2Rn (x) = 0,    x ∈ (0,∞). (31) 

 Next we present some important properties of the rational Chebyshev functions. 

Let Λ = {x|  0 < 𝑥 < ∞}. Then wr (x) =
 L

 x(x+L)
 be a non-negative, integrable, real-valued function on Λ. 

We define the Banach space Lw r
2 (Λ) as follows:  

 Lw r
2 =  f:Λ → ℝ|fismeasurableand ∥ f ∥Lw r

2 < ∞ , (32) 

 where  

 ∥ f ∥Lw r
2 =   ‍

∞

0
|f(x)|2wr(x)dx 

1

2 . (33) 

 Here (. , . )w r
 denotes the inner product on the Lw r

2  Λ . 

The orthogonality of the Chebyshev rational functions on the Lw r
2  Λ  is given by:  

 (Rm , Rn )w r
=  ‍

∞

0
Rm (x)Rn(x)wr(x)dx =

πγm

2
δmn . (34) 

 Any function f ∈ Lw r
2 (Λ), may be expanded by Chebyshev rational functions as:  

 f(x) =  ‍+∞
j=0 cjRj(x), (35) 

 where  

 cj =
(f,R j)w r

∥R j∥w r
2 =

2

πγ j
 ‍
Λ

f(x)Rj(x)wr(x)dx. (36) 
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 If the infinite series in (35) is truncated, then it can be written as:  

 f(x); ‍N
j=0 cjRj(x) = CTΨ(x), (37) 

 where T denotes transposition and C and Ψ(x) are (N + 1) column vectors given by:  

 C ≜ [c0, c1,… , cN ]T , 
  

 Ψ(x) ≜ [R0(x), R1(x),… , RN (x)]. (38) 

 The differentiation of the vector Ψ(x), defined in (38) can be expressed as (Parand and Razzaghi, 2004):  

 
dΨ(x)

dx
= DrΨ(x), (39) 

 where Dr  is the (N + 1) × (N + 1) operational matrix of differentiation of Ψ(x). It is worth noting that 

the matrix Dr  is a lower-Hessenberg matrix and also can be expressed as Dr = D1 + D2, where D1 is a 

tridiagonal matrix which is given by (Parand and Razzaghi, 2004):  

 D1 = Tridiag 
7

4
i,−i,

1

4
i ,    i = 0,1,… , N, (40) 

 and the (N + 1) × (N + 1) matrix D2 = [dij ] is given by:  

 dij =  
2, j ≥ i − 1,
kij iξj , j < 𝑖 − 1,

  (41) 

 where d10 = −1, kij = (−1)i+j+1, ξ0 = 1 and ξj = 2, j > 1. 

Next we investigate the convergence of the series of Chebyshev rational functions. 
Consider the space:  

 Hw r ,𝒜
r (Λ) = {f|fisameasurableand ∥ f ∥r,w r ,𝒜< ∞}, (42) 

 where for non-negative integer r, the norm ∥ f ∥r,w r ,𝒜  is defined by:  

 ∥ f ∥r,w r ,𝒜=   ‍2r
j=0  (x + 1)r+j d j

dxj f 
w r

2

 

1

2

, (43) 

 and 𝒜 is the Sturm-Liouville operator in (31) (Guo et al. 2002),i.e.:  

  𝒜f (x) = −
1

w r (x)

d

dx
 

1

w r (x)

d

dx
f(x) . (44) 

 By induction, we have (Guo et al., 2002):  

  𝒜r f (x) =  ‍2r
j=0 (x + 1)r+jpj(x)

d j

dxj f(x), (45) 

 where pj(x)'s are rational functions which are uniformly bounded on the interval Λ. Therefore, 𝒜r  is a 

continuous mapping from Hw r ,𝒜
r (Λ) to Lw r

2 (Λ). 

 

Theorem 3.1 (Guo et al., 2002) Suppose f ∈ Hw r ,𝒜
r (Λ), PN f(x) = CTΨ(x) and r ≥ 0. Then, there is a 

positive constant 𝒞 such that  

 ∥ PN f − f ∥w r
≤ 𝒞N−r ∥ f ∥r,w r ,𝒜 (46) 

 Function Approximation by Shifted Chebyshev Polynomials and Rational Chebyshev Functions 

 Any sufficiently smooth real function u(x, t) defined on [0, b] × [0, +∞) may be expanded in shifted 

Chebyshev polynomials and Chebyshev rational functions as (Boyd, 2001):  

 u(x, t) =  ‍+∞
i=0  ‍+∞

j=0 λij Ti
∗(x)Rj(t), (47) 

 where  

 λij =
  u(x,t),Ti

∗(x) 
w s

,R j (t) 
w r

∥Ti
∗∥w s  ∥R j∥w r

, (48) 

 in which (. , . ) denotes the inner product. If the infinite series in Eq.(47) is truncated, then it can be 

written as  

 u(x, t) =  ‍N
i=0  ‍N

j=0 λij Ti
∗(x)Rj(t) = Φ(x)T  U Ψ(t), (49) 

 where Φ(x) and Ψ(t) are (N + 1) column vectors defined in (15) and (38) respectively, and U is a 

(N + 1) × (N + 1) known matrix given by:  
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 U ≜  

λ00 ⋯ λ0N

⋮ ⋱ ⋮
λN0 ⋯ λNN

 . (50) 

Description of the Proposed Method 

 In this section, we apply the operational matrices of derivatives of shifted Chebyshev polynomials and 

rational Chebyshev functions to obtain numerical solutions of telegraph equation in a long time period. 

Consider the second order one dimensional linear hyperbolic telegraph equation (1) with the boundary 

conditions (4). For solving this equation, we first approximate u(x, t) as:  

 u(x, t) = Φ(x)T UΨ(t), (51) 

 where U = [uij ](N+1)×(N+1) is an unknown matrix and Φ(x) and Ψ(t) are the vectors that are defined in 

(15) and (38), respectively. Now, by employing relations (39) and (23), we can write:  

 
ut(x, t) = Φ(x)T  U Dr  Ψ(t),

utt (x, t) = Φ(x)T  U Dr
2 Ψ(t),

 (52) 

 and  

 uxx (x, t) = Φ(x)T  (Ds
2)T  U Ψ(t). (53) 

 Also, the function f(x, t) in equation (1) can be approximated as  

 f(x, t) = Φ(x)T  B Ψ(t), (54) 

 where B = [bij ] is a (N + 1) × (N + 1) known matrix with entries  

 Bij =   u(x, t), Ti
∗(x) w s

, Rj(t) 
w r

. (55) 

 Using relations (52)-(55) in equation (1), we get  

 
Φ(x)T  U Dr

2 Ψ(t) + 2αΦ(x)T  U Dr  Ψ(t) + β2Φ(x)TUΨ(t)

= Φ(x)T  (Ds
2)T  U Ψ(t) + Φ(x)T  B Ψ(t),

 (56) 

 or equivalently:  

 Φ(x)T U Dr
2 + 2αU Dr + β2U− (Ds

2)T  U − B Ψ(t) = 0. (57) 

 The entries of Φ(x) and Ψ(t) are independent, so we get:  

 H = U Dr
2 + 2αU Dr + β2U − (Ds

2)T  U − B = 0. (58) 

 Relation (58) gives (N − 1) × (N− 1) independent equations given by:  

 Hij = 0,    i, j = 1,2,⋯ , N − 1. (59) 

 We can also approximate the functions f0(x), f1(x), g0(t) and g1(t) in (4) as:  

 
f0(x) = C1

TΦ(x), g0(x) = C3
TΨ(t),

f1(x) = C2
TΦ(x), g1(x) = C4

TΨ(t),
 (60) 

 where C1, C2, C3 and C4 are known vectors of dimension N + 1. Applying equations (49), (39), (23) and 

(60) and the initial and boundary conditions (4) we get:  

 
Φ(x)T  U Ψ(0) = Φ(x)TC1, Φ(0)T  U Ψ(t) = C3

TΨ(t),

Φ(x)T  U Dr  Ψ(0) = Φ(x)TC2, Φ(l)T  U Ψ(t) = C4
TΨ(t),

 (61) 

 The entries of vectors Φ(x) and Ψ(t) are independent, so from (61) we obtain:  

 
U Ψ(0) = C1, Φ(0)T  U = C3

T ,

U Dr  Ψ(0) = C2, Φ(l)T  U = C4
T ,

 (62) 

 Let  

 
Ω1 ≜ U Ψ(0) − C1 = 0, Ω3 ≜ Φ(0)T  U − C3

T = 0,

Ω2 ≜ U Dr  Ψ(0) − C2 = 0, Ω4 ≜ Φ(1)T  U − C4
T = 0.

 (63) 

 

 By choosing the N equations of Ωi = 0 (i = 1,2,3,4), we get 4N equations, i.e.:  

 
Ωi

j
= 0, j = 0,1,⋯ , N − 1, i = 1,2,

Ωi
j

= 0, j = 1,2,⋯ , N, i = 3,4,
 (64) 
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 equations (59) together with (64) give (N + 1) × (N + 1) equations, which can be solved for uij , i, j =

0,1,⋯ , N. Thus the approximation of the unknown function u(x, t) can be found.  

Numerical Results 

 In this section, we demonstrate the efficiency of the proposed method by numerical solution of some 
examples, i.e., two examples for the telegraph equation in the form (1) with the two types of initial-

boundary conditions (3) or (4).  

 Example 1 We consider the hyperbolic telegraph equation (1) with α = 2,β = 1 and f(x, t) = −6ex−t . 
The initial-boundary conditions are given by:  

 
u(x, 0) = ex , u(0, t) = e−t ,

lim
t→+∞

u(x, t) = 0, u(l, t) = el−t .
 

 The exact solution of this problem is u(x, t) = ex−t . In Figures 1, 2, 3 and 4, the space-time graph of the 

approximate solution with N = 8, absolute error between the approximate and exact solutions, 

approximate and exact solutions for some certain times and absolute error between the approximate and 
exact solutions for some certain times are presented.  

 
Figure 1: Approximate solution for example 1 with 𝐍 = 𝟖 

 

 
Figure 2: Absolute error for example 1 with 𝑵 = 𝟖 
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Figure 3: Approximate and exact solutions in certain times for example 1 with 𝐍 = 𝟖 

 

 
Figure 4: Absolute errors in certain times for example 1 with 𝐍 = 𝟖 

 

Example 2 We consider the hyperbolic telegraph equation (1) with α = 2,β = 1 and f(x, t) =
−4sin(t)sin(x) + cos(t)sin(x). The initial boundary conditions are given by:  

 
u(x, 0) = sin(x), u(0, t) = 0,

ut(x, 0) = 0, u(l, t) = cos(t)sin(l).
 

 The exact solution of this problem is u(x, t) = cos(t)sin(x). In Figures 5, 6, 7 and 8, the space-time 

graph of the approximate solution with N = 8, absolute error between the approximate and exact 

solutions, approximate and exact solutions for some certain times and absolute error between the 
approximate and exact solutions for some certain times are presented.  
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Figure 5: Approximate solution for example 2 with 𝑵 = 𝟖 

 

 
Figure 6: Absolute error for example 2 with 𝑵 = 𝟖 

 

 
Figure 7: Approximate and exact solutions in certain times for example 2 with 𝑵 = 𝟖 
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Figure 8: Absolute errors in certain times for example 2 with 𝑵 = 𝟖 

 

CONCLUSION 

In the present paper, we proposed the operational matrix method, a very effective and convenient 

numerical method for approximating the solution of the second order one dimensional non-homogeneous 
hyperbolic telegraph equations with initial-boundary conditions on the long time period by using the 

operational matrices of derivative for the shifted Chebyshev polynomials and rational Chebyshev 

functions. Two examples are presented to demonstrate higher accuracy and simplicity of the proposed 
method. Also this method can be used for solving other kinds of partial differential equations.  
 

ACKNOWLEDGMENT 

The authors would like to thank M. H. Heydari who has made valuable and careful comments, which 
improved the paper considerably.  

 

REFERENCES  
Atkinson KE and Han W (2009). Theoretical Numerical Analysis: A Functional Analysis Framework 

(Springer) 39.  

Bao W and Shen J (2005). A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for 
Bose-Einstein condensates. SIAM Journal on Scientific Computing 26(6) 2010–2028.  

 Boyd JP (1987). Orthogonal rational functions on a semi-infinite interval. Journal of Computational 

Physics 70(1) 63–88.  

Boyd JP (2001). Chebyshev and Fourier Spectral Methods, 2nd edition (Dover Publications Inc.) 
Mineola, NY.  

Canuto C, Hussaini MY, Quarteroni A and Zang TA (1988). Spectral Methods in Fluid Dynamics, 

Springer Series in Computational Physics (Springer-Verlag) New York.  
Dehghan M (2005). On the solution of an initial-boundary value problem that combines Neumann and 

integral condition for the wave equation. Numerical Methods for Partial Differential Equations 21(1) 24-

40.  
Dehghan M and Fakhar-Izadi F (2011). Pseudo-spectral methods for Nagumo equation. International 

Journal for Numerical Methods in Biomedical Engineering 27(4) 553-561.  

El-Azab MS and El-Gamel M (2007). A numerical algorithm for the solution of telegraph equations. 

Applied Mathematics and Computation 190(1) 757-764.  
Funaro D and Kavian O (1991). Approximation of some diffusion evolution equations in unbounded 

domains by Hermite functions. Mathematics of Computation 57(196) 597-619.  

Gao F and Chi C (2007). Unconditionally stable difference schemes for a one-space-dimensional linear 
hyperbolic equation. Applied Mathematics and Computation 187(2) 1272-1276.  



Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231– 6345 (Online) 
An Open Access, Online International Journal Available at www.cibtech.org/sp.ed/jls/2015/01/jls.htm 
2015 Vol.5 (S1), pp. 5178-5188/Alavizadeh and Ghaini 

Review Article 

© Copyright 2015 | Centre for Info Bio Technology (CIBTech)  5188 

 

Guo BY (1999). Error estimation of Hermite spectral method for nonlinear partial differential equations. 

Mathematics of Computation 68(227) 1067-1078.  

Guo BY, Shen J and Wang ZQ (2000). A rational approximation and its applications to differential 
equations on the half line. Journal of Scientific Computing 15(2) 117-147.  

Guo BY, Shen J and Wang ZQ (2002). Chebyshev rational spectral and pseudo-spectral methods on a 

semi-infinite interval. International Journal for Numerical Methods in Engineering 53(1) 65-84.  
Mason JC and Handscomb DC (2003). Chebyshev Polynomials (Chapman and Hall/CRC) Boca Raton, 

FL.  

Meredith RRJ (1988). Engineers’ Handbook of Industrial Microwave Heating, IET. 

Mohanty RK and Jain MK and George K (1996). On the use of high order difference methods for the 
system of one space second order nonlinear hyperbolic equations with variable coefficients. Journal of 

Computational and Applied Mathematics 72(2) 421-431.  

Parand K and Razzaghi M (2004). Rational Chebyshev tau method for solving higher-order ordinary 
differential equations. International Journal of Computer Mathematics 81(1) 73-80.  

Roussy G and Pearcy J (1995). Foundations and Industrial Applications of Microwaves and Radio 

Frequency Fields (John Wiley) New York.  
Twizell EH (1979). An explicit difference method for the wave equation with extended stability range. 

BIT Numerical Mathematics 19(3) 378-383.  


