CASE STUDIES AND PROJECTS USING STANDARD PROJECT MANAGEMENT (CASE STUDY: DEPARTMENT OF HOUSING ANDURBAN DEVELOPMENTINSHIRAZ)

Mehdi Zamanpour¹ and Aghil Elahi Nezhad²
¹Islamic Azad University of Shiraz
²Department of Accounting, College of Graduate Studies, Science and Re-search Branch of Kohgiluyeh and Boyer-Ahmad, Islamic Azad University, Yasouj, Iran
*Author for Correspondence

ABSTRACT
Usually various projects were evaluated only in terms of three factors of time, budget and performance goals and their success or failure was determined on the basis of it. However, today many believe that more factors involve in determining the success or failure of projects. Also the significance of these factors can be different and even sometimes conflicting for projects with different longevity, due to factors such as the type of technology, the innovation, complexity, Speed in project operations, business objectives and strategic goals. In this study, the standardization of different projects has been evaluated based on four different dimensions and also in the view of three groups of stakeholders in the projects (the project management team, contractors and employers). The four dimensions considered as evaluation criteria for projects standardization are: project efficiency, impact on the customer, business success, bedding for the future. On the basis of research theoretical bases, a questionnaire was distributed among the various stakeholders of the projects. Finally, the statistical evaluation results indicated a significant relationship between various dimensions of project management effective on the standardization of the project.

INTRODUCTION
In an era when organizations are constantly increasing their projects, their success or failure is also more important. Approximately In most cases, the projects are defined to create changes. Without projects, the organizations will become in the static environments and without any communication with the outside competitive environment. Therefore, regardless of the nature of the projects and standardization projects, their success will has a significant role in the success and efficiency of the organization in the long run. In fact, the projects are part of strategic management in organizations.

The first step to study about the relationship between managerial variables and project standardization criteria is agreement on the definition of the success concept and standardization of the project. Although researches on the effectiveness of the organizations have been at the center of organizational theories, there are few studies about success of projects, to provide a standard framework and even applied. Before, the success of these projects was considered aligned with meeting the time objectives, budgeting goals, and project executive functions.

However, even when these criteria are considered simultaneously, they will be able to evaluate only some of the factors of the project success. Also different individuals may also assess project success and standardization criteria vary from others (Freeman, 1992).

Lipotsky et al., (1997), used a multidimensional perspective to evaluate project success. These dimensions are:
• Project Efficiency
• Impact on the customer
• Business Success
• Bedding for the future.

Also each project was assessed in the views of three groups of stakeholders in the project as follows:
• Project Management Team
• Contractors
Research Article

• Employers

Research Theoretical Bases

Project Concepts

The project refers to a group of activities related with each other that in line with each other in order to pursue a predefined and common goal, try to achieve the final result and provide the goal of the project by using existing resources, with the specified quality and on time. All these activities are done under the supervision and leadership of an individual called project manager and in terms of an executive organization called project organization and in the framework of a specific program (Ali, 1387).

Each activity has three main dimensions of time, quality, and cost that each one interacts with the two other factors and their outcome determine show the activities and projects should be done. In the project the three dimensions determine according to factors such as time constraints, the level and quality of resources available and affordable, Allocated capital, technology and work methods, and safety principles and requested standards (Hamid, 1380).

Since all activities of a project have been contacted with each other and doing each of them underlying the beginning of one or several activities, and on the other hand the Performing of any activity needs time and cost consuming, so all of the project activities must be started and completed according to a schedule respectively.

In order to implement the predicted activities of project through the allocation and application of resources, it is necessary to prepare a list of resources required to perform each task, along with the date and the amount, duration and place of (activity). Achieving such a program has been the ultimate goal of a planning and management system that can be achieved by use of methods of project planning, resource allocation, contrasting time and cost, and project management and leadership.

Project Management

Project management expanded in various application fields including construction, engineering and defense. In the United States of America, Sr. Project Manager, Henry Gant, who is also known as the father of planning science and control methods. He is known depend on several factors: First, the use of a Gantt chart that is a project management tool. Second, for collaborating with Fredrick Winslow Taylor in scientific theory of management, and finally he is fame because of his studies on the work and management of the construction of the Navy's ships. He has pioneered in many categories, including business classification structure (WBS) and also resource allocation (Aaron et al., 2001).

The 1950 is recognized as the start of new project management. In America in the early 1950s, in particular, the projects are often managed based on Gantt charts and with informal methods and tools. At that time, there were two mathematical models for timetable: 1. Technology of assessment and review the program or PERT (Program Evaluation and Review Technique) that were developed by Booz-Alen and Hamilton (2003).

Critical Path Method (CPM)

This method was designed with partnership of the two Association of Du Pont and Remington Rand, to manage the repair and maintenance projects. These mathematical techniques quickly spread into many private companies. At the same time, the methods of estimates of prime cost, cost management and engineering economy were expanding by Hans Lang and others. In 1965, the Association of Cost Engineers of America (which now is AACE International Association and its aim is the advancement of Cost Engineering Science) was established by the first users of project management and professional associations of scheduling and planned programs, cost estimating and control of time-cost. AACE continued its activities and issued the first and most complete way for PORTFOLIO (securities) and planning and project management in 2006. The full structure of cost management in 1969, (the Project Management Institute (PMI)) was formed to service the project management industry.

The PMI hypothesis is that, despite widely uses of project management in various fields from software industry projects to the construction industry, it has common tools and methods. In 1981, The PMI decided to publish a guidance book (PMBOK) to identify the project management. This book contains practical standards and guidance which has many applications on the technical discussions. In 1967, the
Research Article

International Project Management Association IPMA was established in Europe and that also had changes and progresses and ICB Association (Competence Baseline Institute) was founded. This association emphasizes on reliable experiences, personal skills and recognition of qualifications. Both of these associations are currently in preparation and regulation of the ISO standard for project management (Pinto, 1998). PMBOK (that is as Project Management Institute) defines project management as such: Project management is a tool for knowledge, skills, and technical methods to lead the project activities to main needs (goals) of the project. PRINCE2 planning, monitoring and controlling all aspects of the project and motivating all the people involved in the project to success means the achievement of project objectives on certain time, with specified price, quality and efficiency. Project is a temporary work with specified termination date to create a unique product or service. The aim of the project is to meet the ideas or needs DIN69901 (German Organization for Standardization). The project management is a series of constraints as complete tasks, methods and tools used in the project (Aaron, 2001). Project Management is directly the responsibility of the Project Manager. Project Manager rarely involved in the project activities that led to the product output, directly. But he tries more in order that the project develop well, the reciprocal relations of different parts be maker and useful so that the probability of failure is minimized. The project manager is often a representative of client who can identify and present all requirements and demands of the client, well, based on the correct understanding of client, there may well be distinct aura. The ability to create cohesion and coordination between the various processes of different parts of contracts, and creating a close relationship with customer representative is very essential and important. A successful manager to ensure that all of the time, cost, quality and above all, customer satisfaction are well known, Should be able to see (to predict) the entire project from beginning to end, and assures others that his prediction will be attained. Production of any product or establish any service such as construction, transportation, electronics, computer software, financial services and so on, Each one has its own executive views and points of view that should be anticipated by the project manager (Pinto, 1998).

The Triple and Traditional Limitations

Like any other business, projects have their own limitations, too. In the project management these limitations are traditionally including perspective, time and cost. These three factors are also called project management triangle and each constraint represents one of the sides of the triangle. As in the geometry if one of the sides changed the other side’s change, too, in the project management changing any of the restrictions influence on other factors. In another classification the product quality or efficiency can be separated from the perspective and quality be considered as the fourth constraint. Project Management Triangle can be considered for relations between time, cost and quality.

(Quick, cheap and good) the project management triangle:
Time: The time limitation is the amount of time available to complete the project.
Cost: The cost limitation is the amount of funds available to complete the project.
Perspective: The Perspective limitation is the processes that must be performed to obtain the final results of the project.

These constraints interact with each other and change of each one changes the other limits. For example, if the Perspective of the project (objectives or quality) increased naturally time and cost also increase. A severe limitation of time causes to increasing costs and reducing the Perspective. Also the budget which is quite limited, increases time and reduces Perspective. The discipline of project means preparing tools and techniques that enable the project management team (not only the project manager) to organize their Works with regard to the limits. Another view on project management is that we consider these three constraints as financial, time, and human resources. If you want to finish your work in a shorter amount of time you should spend more manpower that this will cause to increase the costs of the project as far as costs reduce by doing a project quickly (Majid, 1385).

Time

There are several methods to analysis and investigate and also to estimate the time required to produce a deliverable product. One of these methods is to identify activities needed to produce a product deliverables and set Work Breakdown Structure schedule (WBS). First, it should be estimated the
Project management attempts to overcome variables such as risk or inhibit them. Project Manager shall adjust its management system so that the management system itself guides the system without the need for manager, otherwise, the system itself will be a burden for manager. In this section, there are many methods and strategies of management that educated people have been written good books about it and the best is RS Pressman.

Risk
With the potential factor of project failure we can overcome or destroy most of negative risks (potential factors of failure) with proper planning and spending time and resources. According to some definitions (Third Edition PMBOK) risk can also have a positive aspect, this means that sometimes risk is a potential situation that can even cause to achieve the operation of the project sooner than expected. Customers (both internal and external project sponsors) and external organizations (such as government agencies and modifiers) determine the three major factors of time, cost and perspective. The retained factor i.e. the risk can be managed by the project team ideally and based on accurate estimation and proper planning methods. During the process of negotiation and dialogue with stakeholders the final objectives of the project on time, cost, perspective and risk determine in a specific contract. In order to control these variables properly a good project manager must have a deep knowledge and good experiences in the four areas (time, cost, perspective and risk) and also 6 domains of unity, communication, financial resources, quality assurance and timing program of physical progress and also supplies. There are different approaches to managing project activities including: speed, interaction, development and phasing. Regardless of the used approach and with a particular attention, the Outcomes, objectives, duties and responsibilities of all personnel associated with the project such as stakeholders should be illuminate clearly (Majid, 1385).

Traditional Vision
In traditional vision, five consecutive steps are necessary to complete the project. In this view, at first it is necessary to identify the 5 components of a project (4 Phases + control stage) in the project's progress steps. 1- The initial stage of project 2- the planning or design phase 3- project performance or executive phase 4-monitoring of projects and control systems 5-project completion phase. It should be mentioned that it is not necessary to complete these 5 steps in all projects. For example, phases of planning or
Research Article

monitoring may not be in some projects and in some projects, stages 2, 3 and 4 may be repeated several times. Many industries use these steps. For example, in the architectural design with masonry materials (brick and the mortar), the projects use steps such as pre-designing, the imaginary designing (perceptual), schematic designing, development designing and construction draws and so on. In development software, this approach is often known as the development waterfall (Majid, 1385).

The Overall Research Method

The research is objectively an applied Research. And in terms of method is descriptive survey research and since investigate the relationship between the variables and effect of the independent variable on the dependent variable, it is a causal and correlational research and the design of research is post-facto.

The instrument used in this study is a questionnaire. After collecting the theoretical bases of the study and according to analysis of previous researchers, the questionnaires were designed by the researcher. This research is a descriptive – correlational type and summary of which is presented below:

In descriptive studies, researchers follow what the issue is and wants to know how the phenomenon, variable, objects or thing is. In other words, this study examines the status quo. And describes the current situation regularly and systematically and studies the characteristics and attributes and, if necessary, reviews the relationship between variables. Descriptive researches have both applied aspect and principles aspect; in the applied aspect, the results are used in decision and policy making and also plannings. The management is in the realm of work, and the work of managers including senior managers, political managers or lower-level managers, whether in the public sector or the private sector and companies is decision making.

In the basic dimension the descriptive researches lead to discovery of facts and realities of the world of creation. These researches discover the scientific facts and achieve mass information by inductive method, in basic sciences such as physics, chemistry, biology, geology, genetics and economies. It should be noted that the discovery of scientific laws and cause and effect relationships or correlation between variables and factors as general propositions, is not possible through the descriptive study (Delavar, 1388).

Research Hypotheses

1. There is a significant relationship between project performance and project standardization.
2. There is a significant relationship between impact on the customer and project standardization.
3. There is a significant relationship between project success and project standardization.
4. There is a significant relationship between bedding for the future and project standardization.

Define the Population and Sampling

The population is the entire set of possible values or recorded information of a qualitative attribute about the full collection of units that we want to infer them.

The population is the purpose of the research and the practice of collecting data means extracting conclusions about the population (Bhattacharya and Johnson, 1379). A statistical population includes all of the real or imagined members, a group of persons, events and things that the researcher generalizes his findings to them (Salimi, 1376).

The population consists of individuals or units that have at least one common trait (Sarmad et al., 1387). The sample is selecting a percentage of the population as its representative (Delavar, 1387). In most human studies, the researcher wishes to select a sample that he ensure To the extent that the groups are in population, as a population representative, be present in the sample, too, and these samples are called classified samples.

In this method the percentage of subjects that were randomly selected from each group is equal with the percentage of that group in population (Delavar, 1387). The target population included all stakeholders and people related to housing and urban development projects of Shiraz. To obtain the sample size of the population, the stratified random method was used, and the sample of 200 persons has been determined by using Cochran formula. With regard to the optimal use of available facilities, if 90% of the provided questionnaires were collected so the Research can be analyzed that was more than the required sample size and there is no problem in the sample size and the ability to generalize.
Research Article

The Validity of the Questionnaire

The assessment tools should have the necessary reliability and validity to enable the researcher to collect data appropriate to the research (Hafez, 1377). The validity means whether the content of tools or the questions in the questionnaire measures the variables and the research subject accurately or not? In other words, if we measure what we think they really measure? (Momeni, 1386). To estimate and provide the validity of research tools and questionnaire, the experts' opinions inquiry will be used.

The Reliability of the Questionnaire

The reliability of the measurement tools means if a measurement is repeated under the same conditions, to what extent the results are similar and can be trusted? (Hafez, 1377). In this study to determine the reliability of the questionnaire the Cronbach's alpha will be used. For calculating Cronbach's alpha, at first the Variance of scores of each sub-question in the questionnaire and the total variance should be calculated. Then the alpha coefficient can be calculated by using the following formula and SPSS software:

\[\alpha = \frac{S^2 - \sum S^2_j}{N \cdot S^2} \]

In the above formula: \(\alpha \) = estimate the reliability of test, \(j \) = the number of test questions, \(S^2_j \) = the variance of the j-th subset, \(S^2 \) = the total variance (Sarmad et al., 1376).

The Cronbach's Alpha test result for the questionnaire is shown in the table below.

<table>
<thead>
<tr>
<th>Cronbach's alpha test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's alpha</td>
</tr>
<tr>
<td>.813</td>
</tr>
</tbody>
</table>

Questionnaire

In this study, to obtain the data necessary to test the hypotheses of the study, the researcher made questionnaire was used. The Questionnaire contains 28 questions on various aspects of the question which is described below.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Aspects</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 6</td>
<td>project efficiency</td>
<td></td>
</tr>
<tr>
<td>7 to 12</td>
<td>impact on customer</td>
<td>Project management</td>
</tr>
<tr>
<td>13 to 21</td>
<td>business success</td>
<td></td>
</tr>
<tr>
<td>22 to 28</td>
<td>bedding for the future</td>
<td></td>
</tr>
</tbody>
</table>

Data Analysis Method

In order to analyze the data collected descriptive and inferential statistics will be used.

Descriptive Statistics

Descriptive statistics will be used for the demographic and other descriptive data as tables, Central indexes, graphs and percentage by spss software.

Inferential Statistics

The Inferential statistics will be used by using spss software to analyze data collected from the sample about the questions; the analysis of variance which is a statistical method is used to obtain the response. The ANOVA is used to analyze the differences between the mean of category variables or differences between two or more samples. Here we use one-way analysis of variance. In One-way analysis of variance the effect of one independent variable on the dependent variable is examined. The important pre-assumption for this technique is that the samples are randomly selected from two or more population. The method that we will use is the Pearson correlation coefficient method. Correlation means that two variables change together. When the increase or decrease in one variable is associated with the decrease or increase in another variable, these variables called correlated.
Pearson correlation coefficient is used when the assumptions are implicated bilateral relations. The Pearson correlation coefficient is also called simple correlation coefficient.

Pearson correlation coefficient (r) is a parametric method that is used for the data normally distributed or in large numbers, and the coefficient is calculated by following formula:

\[
r = \frac{\sum xy - n\bar{x}\bar{y}}{\sqrt{\sum x^2 - n\bar{x}^2} \sqrt{\sum y^2 - n\bar{y}^2}}
\]

Distribution of respondents in each section of the questionnaire according to the designed dimensions of the questionnaire is as follows.

Descriptive data

<table>
<thead>
<tr>
<th></th>
<th>Project performance</th>
<th>Impact on the customer</th>
<th>Business success</th>
<th>Bedding for the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6913</td>
<td>1.6527</td>
<td>1.6156</td>
<td>1.6234</td>
</tr>
<tr>
<td>Median</td>
<td>1.5000</td>
<td>1.3333</td>
<td>1.3333</td>
<td>1.5714</td>
</tr>
<tr>
<td>Mode</td>
<td>1.00</td>
<td>1.00</td>
<td>1.11</td>
<td>1.43</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>.66796</td>
<td>1.04138</td>
<td>.79758</td>
<td>.57156</td>
</tr>
<tr>
<td>Variance</td>
<td>.446</td>
<td>.636</td>
<td>.327</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>4.17</td>
<td>10.00</td>
<td>5.56</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Normality Test of Data

Since the normality of the dependent variable leads to the normality of the residuals; it is necessary to control the normality of the model before fitting it.

The null hypothesis and the hypothesis versus normality test are as follows:

\[
H_0 : \text{Data distribution is normal} \\
H_1 : \text{Data distribution is not normal}
\]

The Kolmogorov-Smirnov test was used to test the above hypothesis. In this test when significance level is less than 5% the null hypothesis is rejected at the 95% level of confidence;

In this study the Kolmogorov-Smirnov test is used to assess the normality of the data. Given the high test statistics and low test significance level, the hypothesis of normality of the data is approved.

Normality test

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Significance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.516</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Based on the presented values (Table 4-2) since the values of the significance level, the study variables is less than 5% (Sig. <0/05 or P-value), so the null hypothesis i.e. normality of the variables do not reject. So the assumption of normality of the data approved.

Hypotheses Testing

The ANOVA and the Pearson correlation coefficient test were used to test the hypotheses of this study.

The analysis of variance test examines a significant relationship between the independent and dependent variables and examines the differences in means and if the ANOVA test confirmed, it indicates a significant relationship between the independent and dependent variables. And the correlation coefficient test was used to assess the orientation of this relationship and correlation rate of the dependent and
Research Article

independent variables that According to this test, the orientation and the effect of the independent variable on the dependent variable will evaluate.

Testing the First Hypothesis

Hypothesis: There is a significant relationship between project performance and project standardization.

H0 Hypothesis: There is no significant relationship between project performance and project standardization.

H1 Hypothesis: There is a significant relationship between project performance and project standardization.

The ANOVA test results for the hypothesis regarding the value of the test statistic (F) and the low significance level of the test (sig) show that there is a significant difference between the project performance and the project standardization. Therefore, there is a significant relationship between project performance and project standardization.

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>23.472</td>
<td>28</td>
<td>.838</td>
<td>8.090</td>
</tr>
<tr>
<td>Within Groups</td>
<td>22.900</td>
<td>221</td>
<td>.104</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46.372</td>
<td>249</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Pearson correlation coefficient was used to determine the effect of independent variables on the dependent variable, that the test results indicate a moderate and positive correlation between project performance and project standardization. The test statistic indicates .593 that is a positive number and is between zero and one. And the Test significance level (0.000) is less than 0.5Therefore, the null hypothesis was rejected and this hypothesis was confirmed. This means there is a significant relationship between project performance and project standardization.

Pearson correlation coefficient

<table>
<thead>
<tr>
<th>Significance level</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000</td>
<td>.593 **</td>
</tr>
</tbody>
</table>

Testing the Second Hypothesis

Hypothesis: There is a significant relationship between impact on the customer and project standardization.

H0 Hypothesis: There is no significant relationship between impact on the customer and project standardization.

H1 Hypothesis: There is a significant relationship between impact on the customer and project standardization.

ANOVA

<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>40.111</td>
<td>54</td>
<td>.743</td>
<td>23.135</td>
</tr>
<tr>
<td>Within Groups</td>
<td>6.261</td>
<td>195</td>
<td>.032</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46.372</td>
<td>249</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ANOVA test results for the hypothesis regarding the value of the test statistic (F) and the low significance level of the test (sig) show that there is a significant difference between the impact on the customer and the project standardization. Therefore, there is a significant relationship between the impact on the customer and project standardization.

The Pearson correlation coefficient was used to determine the effect of independent variables on the dependent variable, that the test results indicate a strong and positive correlation between impact on the customer and project standardization. The test statistic indicates .816 that is a positive number and is close to one and indicates a strong correlation between the impact on the client and the project standardization. According to the Test significance level (0.000) which is less than 0.5 Therefore, the null hypothesis was rejected and this hypothesis was confirmed. This means there is a significant relationship between impact on the customer and project standardization.

Pearson correlation coefficient

<table>
<thead>
<tr>
<th>Significance level</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000</td>
<td>.816**</td>
</tr>
</tbody>
</table>

Testing the Third Hypothesis

Hypothesis: There is a significant relationship between project success and project standardization.

H0 Hypothesis: There is no significant relationship between project success and project standardization.

H1 Hypothesis: There is a significant relationship between project success and project standardization.

The ANOVA test results for the hypothesis regarding the value of the test statistic (F) and the low significance level of the test (sig) show that there is a significant difference between the project success and the project standardization. Therefore, there is a significant relationship between project success and the project standardization.

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>14.988</td>
<td>13</td>
<td>1.153</td>
<td>8.669</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>31.384</td>
<td>236</td>
<td>.133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46.372</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Pearson correlation coefficient was used to determine the effect of independent variables on the dependent variable, that the test results indicate a strong and positive correlation between project success and project standardization. The test statistic indicates .514 that is a positive number and indicates a moderate correlation between the project success and the project standardization. According to the Test significance level (0.000) which is less than 0.5 Therefore, the null hypothesis was rejected and this hypothesis was confirmed. This means there is a significant relationship between project success and project standardization.

Pearson correlation coefficient

<table>
<thead>
<tr>
<th>Significance level</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000</td>
<td>.514**</td>
</tr>
</tbody>
</table>
Testing the Fourth Hypothesis

Hypothesis: There is a significant relationship between bedding for the future and project standardization.

H0 Hypothesis: There is no significant relationship between bedding for the future and project standardization.

H1 Hypothesis: There is a significant relationship between bedding for the future and project standardization.

The ANOVA test results for the hypothesis regarding the value of the test statistic (F) and the low significance level of the test (sig) show that there is a significant difference between bedding for the future and the project standardization. Therefore, there is a significant relationship between bedding for the future and project standardization.

<table>
<thead>
<tr>
<th>ANOVA</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>21.413</td>
<td>16</td>
<td>1.338</td>
<td>12.493</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>24.959</td>
<td>233</td>
<td>.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>46.372</td>
<td>249</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pearson correlation coefficient

<table>
<thead>
<tr>
<th>Significance level</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>.000</td>
<td>.514**</td>
</tr>
</tbody>
</table>

The Pearson correlation coefficient was used to determine the effect of independent variables on the dependent variable, that the test results indicate a strong and positive correlation between bedding for the future and project standardization. The test statistic indicates .659 that is a positive number and indicates a moderate correlation between bedding for the future and the project standardization. According to the Test significance level (0.000) which is less than 0.5 Therefore, the null hypothesis was rejected and this hypothesis was confirmed. This means there is a significant relationship between bedding for the future and project standardization.

Conclusion

The projects management of organization is as the factor of organizations development and causes that all organizations look for methods to improve the performance and success of their projects and standardization of them. In fact, organizations to survive have no choice but improve their projects and those who want to be antecedor always, should improve themselves and their projects continuously. This is more important particularly in projects that have high costs and in areas such as Shiraz city that has no appropriate infrastructure. Because if this kind of projects be successful, often bring many strategic opportunities for organizations. The first step in the cycle of continuous improvement of projects is project audit based on a predetermined standard. Then based on the results of this audit the improvement procedures perform to filling the gap between the current situation and the desired situation. The Organizational Maturity Model of Project Management is one of these standards that by providing a roadmap help the organization to assess itself according a specific pattern. Also, as we seen, each group of stakeholders consider different and sometimes adverse factors as effective factors on the project standardization. Therefore, it is essential that a comprehensive approach should be considered to define the project success that is able to consensus with other stakeholders.

REFERENCES

Research Article

Mohammad Jalali and Colleagues (2002). Designing and explaining of management system, project planning and control, First report - the study of literature, and examine the current situation, University of science and aerospace complex, Malek Ashtar University of Technology.

Mohammad Jalali and Colleagues (2003). Designing and explaining of management system, project planning and control, third report –cost indices, Calculate the price Data Project, University of Science and Aerospace Complex, Malek Ashtar University of Technology.