AN OPEN ACCESS, ONLINE INTERNATIONAL JOURNAL AVAILABLE AT www.cibtech.org/sp.ed/jls/2015/02/jls.htm

2015 Vol. 5 (S2), pp. 2234-2238/Bahrami and Attarzadeh

Review Article

COMPUTING TOPOLOGICAL INDEX OF SOME TYPE OF NANO TUBES AND NANOTORI BY ONE PROGRAM

*Amir Bahrami1 and Nima Attarzadeh2

1 Young Researcher and Elite Club, Garmsar Branch, Islamic Azad University, Garmsar, Iran
2 Department of Computer Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

*Author for Correspondence

ABSTRACT
The Wiener index \(W \) is the sum of distances between all pairs of vertices of a (connected) graph. In this paper, we will explained one program (by Visual Basic language), for Computing Wiener index of nanotubes and nanotori which have heptagons.

Keywords: Topological Index, Wiener Index, Molecular Graphs, Nanotubes, Nanotori

INTRODUCTION
In this article, all graphs are finite, undirected, connected, without loops and multiple edges. The vertex and edge sets of a graph \(G \) are \(V(G) \) and \(E(G) \). The numbers of vertices and edges of \(G \) are denoted by \(p = p_G \) and \(q = q_G \), respectively.

Under distance \(d_G(u, v) \) between vertices \(u, v \in V(G) \) we mean the standard distance of the simple graph \(G \), i.e., the number of edges on a shortest path connecting these vertices in \(G \) (Buckley et al., 1990). The distance of a vertex \(v \in V(G) \), \(d_G(v) \), is the sum of distances between \(v \) and all other vertices of \(G \). The Wiener index is a graph invariant based on distances in a graph. It is denoted by \(W(G) \) and defined as the sum of distances between all pairs of vertices in \(G \):

\[
W(G) = \sum_{u,v \in V(G)} d(u,v) = \sum_{v \in V(G)} d_G(v) \quad (1)
\]

The name Wiener index or Wiener number for the quantity defined in Equation (1) is usual in chemical literature, since Harold Wiener (Wiener, 1947), in 1947, seemed to be the first to consider it. Wiener himself used the name path number, but denoted his quantity by \(w \). Wiener’s original definition was slightly different – yet equivalent – to (1). The definition of the Wiener index in terms of distances between vertices of a graph, such as in Equation (1), was first given by Hosoya (1971). Starting from the middle of the 1970s, the Wiener index gained much popularity and, since then, new results related to it are constantly being reported. For a review, historical details and further bibliography on the chemical applications of the Wiener index see references: (Hosoya, 1988), (Huang et al., 1996), (Huang et al., 1997), (Imrich et al., 2000) and (Juvan et al., 1995).

In this paper, we refer to one program for computing the wiener index of nanotubes and nanotori. Through this paper, our notation is standard and is similar to (Buckley et al., 1990).

RESULTS AND DISCUSSION
In this section we will explained one program (by Visual Basic language), for Computing Wiener index of nanotubes and nanotori which have heptagons.

Imports System
Friend Java As A
Public Class Hepta
()Public Sub New
For i As Integer = 0 To layers
()LayersInfo(i) = New layer
Next i
For i As Integer = 0 To num_vertices
()vertices(i) = New node

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
Next i
End Sub
Public layers As Integer=14
Public num_vertices As Integer=2000
Public edges As Integer=0
Public adj()() As Integer
Public dist()() As Integer
Public vertices(num_vertices) As node
Public LayersInfo(layers) As layer
Sub CalculateFloyd(ByVal S As String)
Dim i, j, k As Integer
For i = 0 To Me.LayersInfo(Me.layers).tail
For j = 0 To Me.LayersInfo(Me.layers).tail
If Me.adj(i)(j)=0 Then
Me.dist(i)(j)=9999
Else
Me.dist(i)(j)=Me.adj(i)(j)
End If
Me.dist(i)(i)=0
Next j
Next i
For k = 1 To Me.LayersInfo(Me.layers).tail
For i = 1 To Me.LayersInfo(Me.layers).tail
For j = 1 To Me.LayersInfo(Me.layers).tail
If Me.dist(i)(k)+Me.dist(k)(j)<Me.dist(i)(j) Then
Me.dist(i)(j)=Me.dist(i)(k)+Me.dist(k)(j)
End If
Next j
Next i
Next k
Try
Dim o As New FileOutputStream(S)
Dim bs As New BufferedOutputStream(o)
Dim ps As New DataOutputStream(bs)
For i = 1 To Me.LayersInfo(Me.layers).tail
For j = 1 To Me.LayersInfo(Me.layers).tail
ps.writeInt(Me.dist(i)(j))
Next j
Next i
ps.close
o.close
Catch e As Exception
End Try
End Sub
Sub LoadFloyd(ByVal S As String)
Dim i, j As Integer
Try
Dim fr As New FileInputStream(S)
Dim bs As New BufferedInputStream(fr)
Dim ps As New DataOutputStream(bs)
For i = 1 To Me.LayersInfo(Me.layers).tail
For j = 1 To Me.LayersInfo(Me.layers).tail
(ps.writeInt(Me.dist(i)(j))
Next j
Next i
(ps.close)
(o.close)
Catch e As Exception
End Try
End Sub

Dim br As New DataInputStream(fr)
Me.LayersInfo(Me.layers).tail = For i = 1 To
Me.LayersInfo(Me.layers).tail = For j = 1 To
()Me.dist(i)(j)=br.readInt
Next j
Next i
()br.close
()fr.close
Catch e As Exception
End Try
End Sub
()Friend Overridable Sub initnodes
For i As Integer = 1 To num_vertices
vertices(i).degree=0
vertices(i).number=i
Next i
End Sub
(As Integer, ByVal value As Integer) Friend Overridable Sub [set](ByVal i As Integer, ByVal j
edges += 1
adj(i)(j)=value
adj(j)(i)=value
vertices(i).degree += 1
vertices(j).degree += 1
End Sub
()Friend Overridable Sub calculatelayers
LayersInfo(1).number=7
LayersInfo(1).head=1
LayersInfo(1).tail=7
For i As Integer = 2 To layers
LayersInfo(i-1).number+14=LayersInfo(i).number
i-1).tail+1)LayersInfo(i).head=LayersInfo
i).head+LayersInfo(i).number-1)LayersInfo(i).tail=LayersInfo
Next i
End Sub
()Friend Overridable Sub initlayer
()calculatelayers
For i As Integer = 1 To layers - 1
LayersInfo(i).tail - 1 For j As Integer = LayersInfo(i).head To
()set][j,j+1,1]
Next j
(LayersInfo(i).tail,1,set][LayersInfo(i).head]
Next i
End Sub
Integer) As Integer) Friend Overridable Function findfirstdegree2(ByVal l As
LayersInfo(l).tail For i As Integer = LayersInfo(l).head To
If vertices(i).degree=2 Then
Return i
End If
Next i
Return -1

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
End Function
()Public Overridable Sub inItNetwork
()InitLayer
Dim temp, iterator As Integer
For i As Integer = 2 To layers
(temp= findfirstdegree2(i-1
(head,1.(set)(temp, LayersInfo(i)
iterator]=LayersInfo(i).head]
For k As Integer = 1 To 7
iterator]=iterator]+3]
(temp= findfirstdegree2(i-1
Then 0<If temp
(set)(temp,iterator],1]
End If
For l As Integer = 1 To i-2
iterator]=iterator]+2]
(temp=findfirstdegree2(i-1
Then 0<If temp
(set)(temp,iterator],1]
End If
Next l
Next k
Next i
End Sub
End Class

Partial Friend Class Rectangular Arrays
ByVal Size1 As Integer, ByVal Size2 As)Return Rectangular Integer Array Friend Shared Function
(()()Integer) As Integer
{} ()(1 - Dim Array As Integer() = New Integer(Size1
For Array1 As Integer = 0 To Size1 - 1
{} (Array(Array1) = New Integer(Size2 - 1
Next Array1
Return Array
End Function
End Class

ACKNOWLEDGEMENT
The first author is supported from "Young Researchers and Elite Club, Garmsar Branch, Islamic Azad University, Garmsar, Iran", for research project entitled:" Computing Topological Indices of some type of Nanotubes and Nanotori". The authors would like to thank for supporting this project.

REFERENCES
Buckley F and Harary F (1990). Distance in Graphs (Addison-Wesley) Redwood.