ABSTRACT
Exercise training-induced increase in anti-inflammatory cytokines is one of methods proposed to reduce chronic inflammation. The purpose of the present study was to investigate the effects of strength training on plasma anti-inflammatory cytokines and their relationships with testosterone and cortisol hormone and body composition in young men. Nineteen sedentary men (age, 20-30 yr), volunteers and participant in the study were randomly divided into two groups, strength training (n=10) and control (n=9) group. Blood samples were collected before and after 10 weeks from intervention, and the concentrations of plasma IL-4, IL-10 and testosterone were measured. Ten weeks strength training programme consisted of 7 exercises in two sets with 8 repetitions at 70% of 1-RM in each exercise, and this was then progressively changed to three sets with 8 repetitions at 80% of 1-RM in weeks 10. Dependent and independent t test, indicated that strength training increased upper and lower body strength, fat free mass, testosterone hormone and decreased cortisol hormone and body fat percent (P<0.05), but concentrations of plasma IL-4 and IL-10 not changed (P>0.05). In addition, Pearson’s correlation indicated that no relationships were between changes in anti-inflammatory cytokines concentrations and changes in testosterone cortisol hormone and body composition (P>0.05). These results indicated that despite significant improvement of strength and body composition, 10 weeks strength training did not effect on anti-inflammatory cytokines in young men.

Keywords: Inflammation, Cytokine, Cortisol, Overweight and Athlete Men

INTRODUCTION
Sedentary lifestyle increases the risk of cardiovascular diseases, diabetes and other diseases related to plasma concentration of inflammatory cytokines. Increase in the level of inflammatory mediators is associated with wide variety of chronic diseases (Kohut et al., 2006). From the historical point of view, inflammation is the natural response of body to a severe infection episode; however, chronic inflammation is a symptom of chronic infection (Mathur and Pedersen, 2008). During the last decade, inflammatory mechanisms have been identified to be of key importance in pathologic process of several health disorders including ischemic cardiovascular diseases (Hansson, 2005), rectum cancer (Landi et al., 2005), heart attack (Hallenbeck, 2002), type 2 diabetes (Lu et al., 2009), chronic obstructive pulmonary disease (Gan et al., 2004), and Alzheimer (Akiyama et al., 2000). Considering the widespread and harmful effects, finding the behavioral interventions to decrease the inflammation such as exercise training is of extreme importance. Therefore, it is thought that inflammatory pathway is potential therapeutic target for interventions to reduce disease and disability (Beavers et al., 2010). Although a few pharmacological interventions, such as statin, and angiotensin converting enzyme inhibitor, use decrease inflammation, as evidence by reducing the concentration of CRP, no current medical agents with anti-inflammatory effects is known to be used for treatment persistent inflammation in the non-elderly (Nicklas et al., 2005). Yet, to date, there is little definitive evidence for therapies that can effectively treat individuals with elevated markers of inflammation that are within the clinically normal range. On the other hand, lifestyle behavioural interventions, including changes in food/dietary intake and physical activity, may have clinically significant benefits for improving inflammation over the long-term (Beavers et al., 2010). Similar intervention studies indicated the relationship between physical activities and the level of inflammatory markers especially in case of chronic diseases with rising
Inflammation condition (Petersen and Pedersen, 2005). Specifically, lower inflammatory biomarker concentrations are observed in individuals who report performing more frequent and intense physical activity (Beavers et al., 2010).

Altered levels of cytokines are not only seen in inflammatory disease; acute exercise has an effect on cytokine responses and inflammation in healthy individuals. Cytokine production can be affected by physiological factors present in exercise such as stress hormones, acidosis, oxidative stress, and heat among others (Calle and Fernandez, 2010). In addition, cytokine response may vary by the type of exercise, intensity, duration, recovery between exercise bouts and training status (Petersen and Pedersen, 2005). The effects of regular or chronic exercise on basal levels of inflammatory markers have been used to recommend exercise as an anti-inflammatory therapy (Pedersen and Hoffman-Goetz, 2000). Compared to acute bouts of exercise, chronic exercise effects on inflammatory markers have been less investigated (Bruunsgaard, 2005; Peter et al., 2013).

Cytokine responses to a one-session resistance exercise differ with the response to long-term resistance training. In case of severe responses, metabolic needs and muscular damages play a great role (Calle and Fernandez, 2010). On the other hand, long-term resistance training changes the mass of the body, metabolism and tissues’ function (Peter et al., 2013). For instance, on bout of acute resistance exercise prompts the production of reactive oxygen species (ROS) (Calle and Fernandez, 2010). Nonetheless, long-term resistance training increases the antioxidant capacity of the cell (Beavers et al., 2010).

It is also revealed that resistance training may at least improved insulin resistance in two ways: first, by decreasing low grade systemic inflammation and second by improving glucose uptake by muscular cells (Calle and Fernandez, 2010).

These effects may in part be the result of improved body composition (increase in muscle mass), quality of the muscle mass and metabolic adaptations (Beavers et al., 2010). Although the effects of aerobic training on inflammatory markers have been attentional more, a handful of resistance training studies have been conducted, with results largely negative. In a recent study, Abd El-Kader reported a decrease in the levels of serum IL-6 and TNF-α after 12 week resistance training program (Abd, 2011). However, Ferreira et al., (2010) and Levinger et al., (2009) failed to found any change in the concentration of serum IL-6, IL-1β and TNF-α after a 10 week resistance training (Ferreira et al., 2009; Levinger et al., 2009). Moreover, Brochu et al., (2009) demonstrated that resistance training does not improve inflammatory markers; but if weight loss occurs at the same time, significant improvement is found in inflammatory and metabolic parameters (Brochu et al., 2009).

Prior studies have demonstrated that acute strength exercise transiently elevated circulating concentration of anabolic and catabolic hormones (i.e. testosterone and cortisol), and cytokines include IL-10, IL-1ra, IL-6 and IL-1β. With the controversy of the role of testosterone and cortisol in circulation, one of the primary targets might be the modulating activities of immune cells in the circulation (Taheri et al., 2012; Dan et al., 2009). It is now accepted that, there is a significant inverse relationship between testosterone and IL-6 soluble receptors (Dan et al., 2009) i.e. the lower of the level of testosterone is associated with the more pro-inflammatory state. In vitro evidence demonstrates that testosterone may suppress expression of pro-inflammatory cytokines of IL-1, TNF-α and IL-6 but potentiate expression of IL-10 anti-inflammatory cytokine (Daniel and Stuart, 2012). Similarly, the age-induced decrease in the level of steroid hormones are considered as an important reason for the probable increase in pro-inflammatory markers (Dan et al., 2009). Yet, the interaction between endocrine and cytokine responses in trained and untrained individuals has not been elucidated (Pedersen, 2012).

Most of the studies on strength exercise interventions on inflammatory markers were conducted on middle-aged and elderly patients thus generalization of their results to younger individuals could be somehow dubious. Therefore, given the potential advantages strength training have on health and in an attempt to identify the effects strength training on anti-inflammatory cytokines, the present study investigates the changes in the plasma concentration of IL-4 and IL10 and their relationship with cortisol and testosterone response and body composition changes in overweight young men after 10 weeks of strength training.
MATERIALS AND METHODS

Nineteen sedentary overweight (BMI > 25 kg/m²) men who had no regular exercise for at least 12 months were recruited into this study. Subjects were randomly assigned to one of the two groups: strength training group (n=10) or control group (n=10). All subjects were asked to complete a personal health and medical history questionnaire, which served as a screening tool. All subjects were non-smokers and had no history of any kind of medical condition that would prevent them from participating in the exercise intervention. The University’s ethics committee approved the experimental procedures and study protocols, which were fully explained to all subjects. A written consent form was signed by each subject after having read and understood the details of the experiments.

Experimental Design

Following familiarisation, subjects were asked to report to the laboratory for an additional test session designed to determine one-repetition maximum (1-RM) for seven exercises involving the upper and lower body. A detailed description of the 1-RM testing procedure can be found elsewhere (Konstantinos et al., 2015).

Anthropometric Measurements

BMI was calculated by dividing weight (kg) to the square height (m). Waist was measured between the lowest rib and the iliac crest. The hips were measured in their widest part in the pelvic area (Philippou et al., 2009). The waist to hip ratio was calculated through dividing waist to the hips. In order to calculate the percentage of body fat, the thickness of the subcutaneous fat in the three point three heads, stomach and upper pelvic of the subjects was measured using a calliper and then was estimated via Jackson and Pollack three point equation (Donges et al., 2010).

Blood Sampling and Analysis

Blood samples were obtained from all subjects at 0800 h after an overnight fast before and after 10 weeks from intervention. Post-training blood samples from subjects in the training groups were obtained 3-4 days after their last exercise session. On the days before the blood samples were taken, subjects were asked to consume a weight-maintenance diet for 3 days and to avoid strenuous exercise for 4 days. For cytokines and hormones measurement, 5-ml blood was drawn into a glass tube and was centrifuged at the room temperature, separated and frozen at -80°C and stored until subsequent analysis. IL-4, IL-10 (ELISA kits, Bender MEd systems, Austria), testosterone and cortisol (ELISA kits, IBL, Germany) were analyzed by commercially available enzyme-linked immunosorbent assay. The intra- and inter-assay coefficients of variation for cytokines were <10%.

Training program

The strength training program utilized in the present study was similar to that reported previously (Pedersen and Hoffman-Goetz, 2000).

<table>
<thead>
<tr>
<th>Table 1: Per iodized strength exercise training program overview.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1-2</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Chest press</td>
</tr>
<tr>
<td>Shoulder press</td>
</tr>
<tr>
<td>Lat pull-down</td>
</tr>
<tr>
<td>Seated row</td>
</tr>
<tr>
<td>Leg press</td>
</tr>
<tr>
<td>Leg curl</td>
</tr>
<tr>
<td>Lunge</td>
</tr>
<tr>
<td>Session intensity b</td>
</tr>
<tr>
<td>Session volume c</td>
</tr>
<tr>
<td>Session duration d</td>
</tr>
</tbody>
</table>
In brief, strength training was performed 3 days per week for 10 weeks, with 48–72 h of recovery between training sessions. The training was consisted of 7 exercise (chest press, shoulder press, lat pull-down, seated row, leg press, leg curl and lunge) in two sets with 8 repetitions at 70% of 1-RM in each exercise, and this is then as progressive changed to three sets with 8 repetitions at 75% of 1-RM in weeks 10 (table 1). Recovery between sets and exercises was standardized at 120 s, and an increase in resistance was warranted if two extra repetitions could be performed in the last set on two consecutive occasions, which promoted subjects to train proximally to “momentary muscle failure” by exercise completion (Kraemer et al., 2002). Each training session for the resistance group commenced with a 5-min dynamic stretching warm-up routine, followed by the main session, and concluded with 5 min of stretching exercises. The control group did not do any physical activity.

Statistical Analysis

Descriptive statistics were computed and distributions of all variables were assessed for normality. Since the data distribution was normal, t-test and Pearson correlation test was used in order to analyze the data. The mean values of variables obtained before and after 10 weeks in both groups were compared using the dependent “t” test. An independent “t” test was used for the comparison between the two groups. The relationships between variables at baseline and in response to training were determined using Pearson’s correlation test. The level of significance in all statistical analyses was set at P<0.05.

RESULTS AND DISCUSSION

Results

Physiological characteristics of the participants in pre and post-test are presented in table 2. Before the intervention, there was no significant difference in the BMI, body fat percentage, WHR, 1RM of the bench and leg press and the plasma concentration of IL-4, IL-10, cortisol and testosterone (P<0.05).

Dependent and independent t tests revealed that strength training significantly increased the 1RM of the bench and leg press in the post-test (P=0.00) compared to the control group. Furthermore, strength training decrease the body fat percentage in the post-test significantly (P<0.007). However, BMI and WHR did not demonstrate a significant change during the study period (P<0.05) (table 2).

As showed in table 3, plasma concentration of cortisol significantly decreased and plasma concentration of testosterone significantly increased in strength training group (P<0.05), while no significant change in the control group was found. In addition, strength training caused non-significantly increase of IL-4 and IL-10 after 10 weeks (P>0.05) (table 3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control group</th>
<th>Strength group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (kg)</td>
<td>Pre 83.4 ± 5.2</td>
<td>84.1 ± 5.1</td>
</tr>
<tr>
<td></td>
<td>Post 84 ± 4.9</td>
<td>86.2 ± 5.6</td>
</tr>
<tr>
<td>BMI (kg.m⁻²)</td>
<td>Pre 27.3 ± 1.6</td>
<td>29 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>Post 27.6 ± 1.5</td>
<td>28.7 ± 2</td>
</tr>
<tr>
<td>WHR</td>
<td>Pre 91.1 ± 2.1</td>
<td>91.4 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>Post 93.4 ± 2.9</td>
<td>89.6 ± 2.7</td>
</tr>
<tr>
<td>Body fat percent (%)</td>
<td>Pre 21.1 ± 2.1</td>
<td>22.7 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>Post 22.4 ± 1.6</td>
<td>19.8 ± 2.1*</td>
</tr>
<tr>
<td>Chest press (kg)</td>
<td>Pre 73.4 ± 4</td>
<td>74.7 ± 4.3</td>
</tr>
<tr>
<td></td>
<td>Post 74 ± 5.7</td>
<td>95 ± 10.6*†</td>
</tr>
<tr>
<td>Leg press (kg)</td>
<td>Pre 149.1 ± 10.4</td>
<td>142.8 ± 11</td>
</tr>
</tbody>
</table>

Table 2: Physiological characteristics (mean ± SD) of the groups in pre and post-test
Pearson correlation coefficient demonstrated that there was no significant difference between the plasma concentration of cortisol with IL-4 (P= 0.3 and R= 0.27) and IL-10 (P= 0.13 and R= 0.37) and the plasma concentration of testosterone with IL-4 (P= 0.81 and R= 0.06) and IL-10 (P= 0.7 and R= 0.10) in both groups. They experienced no changed during the study period as well (P<0.05). Moreover, the study failed to find a significant difference between BMI with plasma concentrations IL-4 (P= 0.31 and R= 0.21) and IL-10 (P= 0.15 and R= 0.48), body fat percentage with plasma concentrations of IL-4 (P= 0.88 and R= 0.04) and IL-10 (P= 0.74 and R= 0.08) and WHR with plasma concentrations IL-4 (P= 0.17 and R= -0.37) and IL-10 (P= 0.78 and R= -0.08) in both groups.

Discussion

The present study demonstrated that, 10 weeks of strength training significantly increased muscular strength, fat-free mass and testosterone and decreased the fat percentage and cortisol. However, the plasma concentration IL-4 and IL-10 and their relationship with testosterone, cortisol and body composition did not change.

In strength group, the increase in the 1RM of the upper and lower body was accompanied by an increase in the fat-free mass of the body which was significantly higher than the control group. This increase in the fat-free body mass indicates that, the strength group exhibited more protein synthesis and as a result experienced greater muscle hypertrophy (Donges et al., 2010). The increase in muscle mass the main insulin target site, induced by strength training, not only has positive impact in energy expenditure but also improves insulin sensitivity (Calle and Fernandez, 2010).

The relationship between physical activities and inflammation has been reported in several studies (Beavers et al., 2010; Nicklas et al., 2005; Bruunsgaard, 2005). Lower concentration of inflammatory markers has been observed in individuals who reporting more frequent and more intense physical activities (Beavers et al., 2010; Nicklas et al., 2005). The reason for this inverse relationship is not fully known, yet it could be concluded that there must be a relationship between physical activity and adiposity. Consequently, it is feasible that body fat has the greatest effect on the concentration of inflammatory markers in circulation (Beavers et al., 2010; Nicklas et al., 2005). Therefore, it could be concluded that the reason for a lower inflammation in active individuals is primarily because of lower absolute amount of total and visceral body fat (Nicklas et al., 2004). Yet, despite of the 13% decrease in the body fat mass, no significant change was observed in the plasma concentration of the inflammatory cytokines. Moreover, the study failed to find a significant relationship between of the fat mass, or any body composition measures and plasma concentration of cytokines. One group recently demonstrated that, when induced by diet and exercise, weight loss produced cytokine concentration changes that were transient during the period of weight loss, but lost after a subsequent 2-week period of weight.
maintenance (Huffman et al., 2008). Thus, since the cytokine changes induced by dieting or medical interventions because transient weight loss, it could be concluded that cytokine changes are not related to the changes in the fat mass (Nicklas et al., 2004). According to the findings of the present study, alternations in the concentration of cytokine, reported in the past, May be more directly linked to the rate of change in adipose tissue.

Several studies investigating the effects of resistance training on inflammatory markers, have found conflicting results. In one of the first study in 1966, similar to the findings of the present work, a study reported that 12 weeks of incremental resistance training with high intensity does not influence the serum concentration of TNF-α, IL-1β, IL-6 and IL-2 (Hideaki et al., 2006). Similarly, studies by Ferreira et al., (2010) and Levinger et al., (2009) revealed that 10 week circuit resistance training did not induce a change in the serum concentration of pro-inflammatory cytokines and IL-10. Ogawa et al., (2010) demonstrated that 12 weeks of resistance training does not change the plasma concentration TNF-α and IL-6 in elderly women. Brochu et al., (2009) as well, failed to identify an effect of resistance training without other interventions such as dieting on inflammatory and metabolic parameters.

On the other hand, Balducci et al., (2012) showed that a combined resistance and aerobic training for 12 months, reduces the serum concentration IL-4 and IL10 in diabetics and patients with metabolic syndrome. Abd et al., (2011) reported a decrease in TNF-α and IL-6 in diabetics after a 12-week resistance training program. Reduction in the TNF-α of the elderly women after 10 weeks of training (Welc and Clanton, 2013) and after 10 months of resistance and flexibility training in male and female patients (Kohut et al., 2006) have also been reported.

The reason for these conflict results from this study and other ones (Abd El-Kader, 2011; Stefano et al., 2012; Welc and Clanton, 2013) may be the subjects under study, the methodology or the baseline levels of inflammatory markers and study design. Since some studies are conducted on healthy individuals (Welc and Clanton, 2013) and some others are on patients (Abd El-Kader, 2011; Hideaki et al., 2006), it could be concluded that studying healthy and young subjects would be easier in order to identify the response inflammatory cytokines have to exercise training. It seems as if the elderly, the obese and the females are more sensitive to the effects of resistance training on inflammatory markers.

Another probable reason for these contradictions may be the intensity and length of the training programs. In the present study, healthy men participated in training programs for only 10 weeks with 70 to 80% maximum repetition but other studies reporting the reduction of inflammatory markers were conducted in a longer periods (more than 10 months) and were more severe (Kohut et al., 2006; Stefano et al., 2012). Studies have shown that the length and the intensity of trainings affect the cytokine responses so as the extreme response was reported after a 16 week program with intensities over 80% with one maximum repetition (Calle and Fernandez, 2010). The intensity of the training and other indices of the protocol, including the number of repetitions produce unique cytokine responses and various adaptations to the exercise training (Calle and Fernandez, 2010; Peter et al., 2013).

Furthermore, the intervals in time for samplings may have profound effect on the cytokine responses to resistance training. In the similar studies, sampling was done after 17 (Ogawa et al., 2010), 48 (Ferreira et al., 2009), and 72 to 96 (Kohut et al., 2006; Akiyama et al., 2000) hours after the last bout. It is reported that, to evaluate the training effects at rest, samples must be taken at least 72 hours after the last bout (Calle and Fernandez, 2010).

The findings of this study demonstrated that despite of the significant 36% reduction in the cortisol (from 146.1 to 109.4 ng/mL) and the 31% increase in testosterone (from 5.1 to 8.8 ng/mL), there was no significant relationship between cytokine changes and plasma concentration of testosterone and cortisol after 10 weeks of strength training. Since the plasma concentration of the cytokines measured in this study did not have any change, it may be concluded that 10 weeks of training is not sufficient for creating a relationship between changes in the cytokines and cortisol and testosterone and a longer training period would be needed. The present study failed to find a significant relationship between body fat mass, BMI and the waist to hip ratio and the plasma concentration of cytokines. However, there is a probability for further reduction in the percentage of the fat to create more distinct responses by serum concentration of
cytokines; however, findings of the present study and some other ones (Nicklas et al., 2004; Huffman et al., 2008) have revealed that the reduction in the fat mass is independent from the systemic changes in inflammatory cytokines.

In conclusion, according to the findings of this study and despite of the significant increase in muscular strength, fat-free mass and testosterone and the decrease in cortisol and body fat mass, 10 weeks of strength training did not induce a significant change in the plasma concentration of anti-inflammatory cytokines in overweight young men. Longer periods of training and combined the strength training with aerobic ones or dieting may have better effects on reducing the concentration of systemic cytokines. These findings also indicated that the changes in the concentrations of systemic cytokines are not directly related to the absolute changes in the fat mass but they are generally related to the fat mass in the body. Testing this hypothesis through controlled interventions may be worthwhile.

ACKNOWLEDGEMENT
The authors wish to thank the volunteers for their enthusiastic participation in this study.

REFERENCES

Donges CE, Duffield R and Drinkwater EJ (2010). Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Medicine & Science in Sports & Exercise 42(2) 304–313.

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
Research Article

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
Research Article
