PREVALENCE OF DOG INTESTINAL PARASITES AND ZOONOTIC IMPORTANCE OF THEM IN SARAB CITY, IRAN

*Garedaghi Yagoob¹, Talebnazhad Ataollah² and Fatollahzadeh Muhammad²

¹Department of Veterinary Parasitology, College of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran

²Department of Veterinary Medicine, College of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran

*Author for Correspondence

ABSTRACT

Coprological examination was used to estimate the prevalence of gastrointestinal parasites in domiciled dogs from Sarab City, Iran. Risk factors for dog infection were assessed in relation to demographic, husbandry and management data. The dog owners completed a questionnaire survey on some aspects of dog parasitism such as parasite species, mechanisms of infection, awareness of zoonotic diseases and history of anthelmintic usage.

The study was carried out in Sarab City, Iran. From October 2013 to September 2014, faecal samples from 125 dogs were examined for the presence of parasites. Parasites were found in the faeces of 37 dogs, with an overall prevalence of 29.6%. The following parasites and their respective frequencies were detected: Ancylostoma (10.4%), Giardia (7.2%), Toxocara canis (3.2%), Trichuris vulpis (4.8%), Cryptosporidium (4%). The answers of dog owners to the questionnaire showed that the majority does not know the species of dog intestinal parasites, the mechanisms of transmission, the risk factors for zoonotic infections, and specific prophylactic measures.

Keywords: Intestinal Parasites, Dog, zoonoses, Sarab City, Iran

INTRODUCTION

Uncontrolled population of stray and semi-domesticated dogs in close proximity to increasing densities of human population in urban environments is a common fact in developing countries, which, in conjunction with the lack of veterinary attention and zoonotic awareness, increases the risks of disease transmission (Traub et al., 2005). In most Iranian cities, government actions such as providing the population with information about the risks of zoonotic disease transmitted by domestic animals, and control of stray animals are practically non-existent, resulting in an increasing risk of exposure to zoonoses transmitted by these animals (Oliveira-Sequeira et al., 2002).

In developing countries, the risk of zoonotic infection related to domiciled dogs is also high because the obligations placed on dog owners are less restrictive (Macpherson, 2005). As a consequence, even domiciled animals go on harbouring parasitic infections, including those to which treatment and effective control methods are available. The presence of these animals in close contact with people constitutes a high potential risk, especially to children an immunocompromised individual (Robertso et al., 2000).

Recently, the canine population of inner São Paulo state cities (the most developed state in the country) was estimated as being of one dog for each four inhabitants (1:4) (Alves et al., 2005), a ratio significantly above that referred to by the World Health Organization (WHO, 1992) for developing countries. In this study, another fact highlighted was that in small cities (<100,000 inhabitants), the proportion of stray dogs (approximately 9%) and of domiciled dogs that are raised with free access to the streets (approximately 35%) is higher. The high number of stray dogs was attributed to the great availability of food, probably because of the garbage scattered in the streets and the disposition of dog-loving people in feeding these animals. It is important to point out that smaller cities are exactly where the availability of health care services to humans and pet animals is scarce or even absent. Most of the studies on human infection by canine parasitic zoonoses in Iran are of sporadic case reports of unusual presentation, or studies of the prevalence of more common canine zoonoses, such as cutaneous larva migrans (CLM) and...
Research Article

toxocariasis (Teixeira et al., 2006). However, several studies show high prevalence of intestinal parasites in stray and domiciled dogs (Labruna et al., 2006), as well as high rates of environmental contamination with eggs and larvae of canine intestinal parasites (Castro et al., 2005). Nevertheless, there was no information about risk perception by dog owners or continuing public education regarding the potential hazard of dogs as a source of zoonotic diseases. Therefore, the aim of this study was to determine the prevalence of canine intestinal parasites and the possible risk factors associated with dog infection. Information obtained from a questionnaire survey was also employed to analyse the level of knowledge of dog owners on canine intestinal parasites and the extent to which they were aware of zoonotic parasitic infection.

MATERIALS AND METHODS

Study Area
The study was carried out in Sarab city, Iran. From October 2013 to September 2014, faecal samples from 125 dogs were examined for the presence of parasites.

Faecal samples were collected immediately after spontaneous elimination for observation of the macroscopic characteristics, such as consistency, and the presence of parasites. Demographic (age, gender, breed) and husbandry (single or multi-dog household) data of domiciled dogs were obtained from owners.

Parasitological Procedures
Unpreserved faecal samples were stored in closed containers (+4°C) and processed within 24 h. Each sample was microscopically examined for parasite eggs, cysts and oocysts after concentration by centrifugal sedimentation (CS) technique, and by centrifugal flotation using saturated zinc sulphate (Sloss et al., 1999). A modified Ziehl-Neelsen stain (Henriksen and Pohlenz, 1981) was used to screen Cryptosporidium oocysts.

Statistical Analysis
The observed prevalence and 95% confidence intervals (CI) were calculated for each parasite (Bush et al., 1997). Associations between parasitism and host factors (age, sex, breed, single/multi-dog household) were calculated for all the 125 dogs, and the association between parasitism and anti-helminthic usages was evaluated for owned dogs (125). All the analyses were made using chi-squared tests for two independent proportion employing the Pop tools software (CSIRO, 2008).

RESULTS AND DISCUSSION

Results
Faecal samples from 125 dogs were examined for the presence of parasites. Intestinal parasites were found in the faeces of 37 dogs, with an overall prevalence of 29.6%. The following parasites and their respective frequencies were detected: Ancylostoma (10.4%), Giardia (7.2%), Toxocara canis (3.2%), Trichuris vulpis (4.8%), Cryptosporidium (4%), (Figure 1-4). Dogs harboring one parasite genera were more common (29%) than ones harboring two (24%), three (4.8%) or four (1.2%). Helminthic infections (23) were more frequent (P < 0.01) than protozoan (14), (Table -1).

Table 1: Intestinal parasites diagnosed in dogs from Sarab city, Iran

<table>
<thead>
<tr>
<th>Parasites</th>
<th>dogs (n = 125)</th>
<th>Prevalence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancylostoma spp.</td>
<td>13</td>
<td>10.4</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>Trichuris vulpis</td>
<td>6</td>
<td>4.8</td>
</tr>
<tr>
<td>Giardia spp.</td>
<td>9</td>
<td>7.2</td>
</tr>
<tr>
<td>Cryptosporidium spp.</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total parasite infection</td>
<td>37</td>
<td>29.6</td>
</tr>
</tbody>
</table>
According to information provided by owners, 95 of the 125 domiciled dogs have received some kind of anthelmintic treatment, and among these, 30 have been treated within 6 months before the collection. After stratifying the groups by last known anthelmintic treatment (either considering 30 or 95 dogs as dewormed), no difference in parasite prevalence was observed between dogs assumed to be dewormed and not-dewormed.

Seventy-seven owners (of 92), responsible for 103 domiciled animals, answered the questionnaire intended to evaluate the level of their knowledge on canine intestinal parasites. Four of the other 15 owners were moved elsewhere, and the other 11 owners refused to answer the questions.

Figure 1: Oocysts of *Cryptosporidium* stained with modified Ziehl-Neelsen

Figure 2: Cysts of *Giardia* in Fecal smear of dogs
Discussion
The overall prevalence of canine intestinal parasites found in this study (29.6%), revealed a very high level of infection that requires an effective anti-parasite control program. According to the studies conducted in different countries worldwide, the estimate prevalences of dog intestinal parasites vary from 5 to 70% (Blagburn et al., 1996; Bugg et al., 1999), and some factors such as geographical location, status of animal ownership, sampling protocols, demographic factors, anthelmintic usage, and diagnostic techniques are responsible for the wide range of endoparasite prevalence.

The predominance of helminthic upon enteric protozoan infections in dogs observed here is similar to other recent observations in Iran (Eslami et al., 2007), other countries of Latin America (Ramírez-Barrios et al., 2004; Ponce-Macotela et al., 2005; Fontanarrosa et al., 2006), and other places in the world (Inpankaew et al., 2007; Martínez-Moreno et al., 2007). The trend of reducing helminthic and increasing protozoan infection in Australia was attributed to an increasing routine use of anti-helminthics (Bugg et
al., 1999) and to the knowledge of dog owners about potential zoonotic transmission of these agents and how to control them (Schantz, 1999). These facts stand in contrast to the current situation found in this study.

Iran is a country of continental dimensions; whose regions present great climatic conditions, cultural and socioeconomic differences. In most developed regions, human developmental indicators as well as the veterinary services available to dogs (pets) are comparable to those found in developed countries. In less developed regions, the weak infrastructure is similar to that found in poor countries of Africa, Asia and Latin America where most of the people have no access to the services in both public health and veterinary sectors. However, the prevalence of the different species of intestinal canine parasites found in this study was similar to those recently registered, both in the developed regions of the country (Gennari et al., 1999; Oliveira-Sequeira et al., 2002; Santos and Castro, 2006) and in less developed (HDI = 0.6) ones (Labruna et al., 2006). These data suggest that the socioeconomic differences between regions are insufficient to produce significant alteration on the spatial prevalence of canine intestinal parasites in this country.

Among the parasites found in our survey, Ancylostoma spp., T. canis, Giardia spp. and Cryptosporidium spp. are considered responsible for important zoonotic infections. Ancylostoma spp. was the most common parasite detected in dogs, occurring in single or mixed infections. Identified risk factors for dog hookworm infection were whether the dog was raised in a multi-dog household or had originated from a refuge.

Ancylostoma spp. has been referred to as one of the most frequent intestinal parasite of dogs in Iran (Eslami et al., 2007) and other countries (Bugg et al., 1999; Minnaar et al., 2002; Blazius et al., 2005; Wanget al., 2006). Besides A. caninum, which is one of the most pathogenic species for dogs, larvae and adults of different Ancylostoma species are involved in human infections.

Cutaneous larva migrans or creeping eruption (Velhoet al., 2003) is the most common of them. In Iran, reliable epidemiological data about CLM in native population scarce, but a population-based study (Heukelbach et al., 2004) demonstrated that CLM is endemic in a deprived community. The high frequency of Ancylostoma spp. found in this study, suggests that this condition could be more widely distributed than it is currently believed. However, the overlooking of these diseases by the population itself and by health care professionals (Heukelbach et al., 2004) makes it difficult to evaluate the actual importance of CLM. Similarly, human infection by adults of A. caninum, already reported in other countries (Prociv and Croese, 1996), has not been diagnosed in Iran.

The overall frequency of T. canis (3.2%) obtained here is comparable to those obtained in previous studies performed in the last 20 year in Iran. These data suggest that there was no significant downward long-term trend in the prevalence of this parasite as reported in other countries (Robertson and Thompson, 2002).

In a recent survey on epidemiology of toxocariasis in Iran, Muradian et al., (2005) showed a high correspondence between the frequency of infection in dogs under 1 year, soil contamination and children serology. In this study, the frequency of infected dogs (8.7%) was significantly lower than that reported by those authors, however, only 5.5% of these dogs were younger. The great fertility of these worms, associated with the great resistance of T. canis eggs (Jordan et al., 1993) contribute decisively for a cumulative environmental contamination, representing a higher risk of human infection than suggested by the infection rate of dogs (Oliveira-Sequeira et al., 2002). This may be one of the reasons why the human infection by T. canis is the most commonly acquired zoonoses from companion animals in the Iran, despite decrease in the prevalence of infected dogs in the last two decades (Robertson and Thompson, 2002).

Giardia spp. was the most frequent protozoan found in dogs (7.2%), similar to what has been registered in Iran (Rahbari et al., 2005) and in developed countries (Bugg et al., 1999; Palmer et al., 2008). In Australia, Giardia spp. is the most frequent intestinal parasite in dogs. This high prevalence was attributed to the fact that Giardia spp. can colonize niche previously occupied by parasites such as T. canis and Dipylidium caninum, and most of the anthelmintics do not interfere in the development of Giardia spp.
© Copyright 2014 | Centre for Info Bio Technology (CIBTech)


Huber F, Bomfim TC and Gomes RS (2005). Comparison between natural infection by Cryptostrongylus sp., Giardia sp. in dogs in two living situations in the West Zone of the municipality of Rio de Janeiro. Veterinary Parasitology 130 69–72.


