VANISHING BONE DISEASE, A RARE CASE REPORT AND REVIEW OF LITERATURE

Dipti Rani Samanta¹, Tapan Kumar Sahoo², *Saroj Kumar Das³, Preetam C.³ and Surendra Nath Senapati⁴

¹Department of Medical Oncology, Acharya Harihara Regional Cancer Centre, Cuttack, Odisha
²Department of Radiation Oncology, All India Institute of Medical Sciences, Bhubaneswar, Odisha
³Department of Otorhinolaryngology and Head & Neck surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha
⁴Department of Radiation Oncology, Aharya Harihara Regional Cancer Centre, Cuttack, Odisha

*Author for Correspondence

ABSTRACT
Vanishing bone disease (Gorham-Stout syndrome) is an extremely rare entity, with spontaneous and progressive resorption and disappearance of osseous structures which is replaced by vascular connective tissue. Etiology is unknown and few cases of idiopathic osteolysis have been reported. Children and adolescents are most commonly affected. Its clinical presentation is variable and depends upon the site of skeletal involvement. The disease has highly variable prognosis. It can cause minimum disability and death due to possibility of critical structure involvement. We reported a case of vanishing bone disease in a 28-year-old female.

Keywords: Gorham-Stout Syndrome, Osteolysis, Vanishing Bone Disease

INTRODUCTION
Vanishing bone disease (VBD) is a rare idiopathic entity with extensive loss of bony matrix, which is replaced by proliferating thin-walled vascular channels and fibrous tissue (Vinee et al., 1994). Most of the cases occurred in children or adults within 40 years of age group (Motamedi et al., 2003). But, the diseases were previously described in as young as one month to as old as 75 years (Motamedi et al., 2003). We report a case of VBD in a 26-year female.

CASES
A 26-Year old female initially presented with chief complains of difficulty in chewing food, hole in upper hard palate, and loss of hearing in right year for last 6 months.

Figure 1: The figure shows absence of upper molar teeth on right side and an oro-antral fistulous tract present on right side of oral cavity near retromolar trigone area

© Copyright 2014 | Centre for Info Bio Technology (CIBTech)
Case Report

Patient had past history of right upper molar tooth extraction 6 months back. Physical examination of oral cavity showed trismus and a fistula in right upper hard palate and retromolar trigone area with absence of upper molar and premolar and lower molar tooth (figure 1). Examination of other system did not reveal any abnormality. Contrast enhanced CT scan evaluation of face and neck revealed erosion of right occipital condyle, occipital bone and petrous apex with rarefaction or erosion of anterior arch of atlas seen on right side and oro-antral communication with air density in right masticator and para pharyngeal space (figure 2). Biopsy was taken from oro-antral fistulous tract revealed features of VBD (figure 3). The patient was received radiation therapy of 40 Gy to right side face.

Figure 2: Coronal and Sagital CT scan image showing complete absence of maxilla and part of body and Ramus of mandible with adjacent molar and premolar tooth

Figure 3: H & E, 100X- Microsection shows thickened lamellar bone without marrow cavities next to fibrous tissue, with few fibroblasts and a proliferation of vascular channels

DISCUSSION

VBD is characterized by spontaneous or post-traumatic progressive resorption of bone. The disease was first described in 1838 (Huvos, 1991). Different names for this disease are phantom bone, massive osteolysis, and disappearing or VBD, acute spontaneous absorption of bone, hemangiomatosis, and lymphangiomatosis.

The bones of the upper extremity and the maxillofacial region are the common locations for the disease. The disease has male predominance and 60% cases are seen in men (Huvos, 1991). Disease can be
monostatic or polyostatic, but multicentricity is unusual (Velez et al., 1993). The disease may often extend to adjacent bones and soft tissues. Endocrine and metabolic abnormalities are not associated with the disease (Johnson and McClure, 1958). There is no clear evidence regarding malignant, neuropathic and infectious factors in the causation of this disease. The mechanisms of bone destruction and resorption are unknown (Joseph and Bartal, 1987). In general etiology is unknown. Incidence may be related to events regrowth. The total dose of 30 to 45 Gy has only accepted form of treatment with a high incidence of bone graft resorption.

Histopathological findings of VBD depend on the phase of the disease at the time of diagnosis. Two phases of the histopathological findings have been described in the literature (Heffez et al., 1983). The first phase is increased vascular concentration in the bone-displacing fibrous tissue part and in the second phase only fibrous tissue is found. The presence and number of osteoclasts vary in VBD. However, there is no consensus data regarding definitive treatment. Surgical intervention may be a method of choice (Giraudet-Le Quintrec et al., 1995). Surgery involves local resection of the affected bone, with or without replacement prostheses or bone grafts (Giraudet-Le Quintrec et al., 1995). Bone grafting have poor results, and with a high incidence of bone graft resorption.

Radiation therapy has equivocal results, although in a few cases, apparent arrest has been occurred (Handl-Zeller and Hohenberg, 1990). Radiation therapy in early course of the disease appears to be the only accepted form of treatment with a increased chance of success. Radiotherapy causes accelerating sclerosis of the proliferating blood vessels and prevents regrowth. The total dose of 30 to 45 Gy has been reported to be effective (Handl-Zeller and Hohenberg, 1990). Chemotherapy also has been reported to be successful in some patients. Treatment of VBD should include surgery, radiotherapy, and various medications, either alone or combined. The prognosis varies from slight disability to death. Severe disability results due to involvement of the pelvis, thorax, and cervical spine. However, the disease usually remains localized and undergoes eventual spontaneous arrest.

Conclusion

VBD is a rare vascular proliferating disease. There is no standard treatment guideline for the disease due to its rarity. Proper evaluation should be necessary in case of multiple hypoplasia of bones to rule out such situation. Critical structures should be properly evaluated radiologically to rule out the involvement in case of VBD. Large number of case studies is necessary to draw a standard treatment guideline for the disease.

REFERENCES

