STUDY THE EFFECT OF PHASE I PERIODONTAL THERAPIES ON SERUM LIPID PROFILE IN PATIENTS WITH GENERALIZED PERIODONTITIS

Hosein Eslami1, Vahid Fakhrzadeh2, Ali Zarandi3, Human Sadr Hagigi4 and *Ramin Negahdary2
1Department of Oral Medicine, Tabriz Medical University
2Department of Prosthodontics, Tabriz Medical University
3Department of Periodontics, Tabriz Medical University
4Department of Orthodontics, Tabriz Medical University
*Author for Correspondence

ABSTRACT
Recent studies have shown that periodontal infections are associated with atherosclerosis and myocardial infarction. Hypercholesterolemia, particularly elevations in serum levels of LDL and triglycerides appear to be the major risk factors for atherosclerosis. Experiments carried out on animals have also demonstrated the relationship between periodontitis and hyperlipidemia. The aim of this study was to evaluate the effect of phase I periodontal therapies, including education of hygiene, scaling and root planning on decreased serum levels of triglycerides and cholesterol in patients with generalized periodontitis. In this case-control study, 40 patients with moderate generalized periodontitis, who had referred to a dental clinic during 6 months (from September 23, 2013 to March 20, 2014), were selected (20 subjects as the intervention group and 20 subjects as the control group). After a thorough explanation about the type of research, an informed and written consent was obtained from all patients. For all patients before periodontal treatment, the following were measured and recorded: Plaque index, probing depth, bleeding on probing, analysis of adhesion as well as total cholesterol levels, high density cholesterol (HDL) levels and low-density cholesterol (LDL) levels. Then, the intervention group received periodontal treatment and oral hygiene instruction. Approximately 1 week after periodontal treatment, blood lipids levels were again measured. Lipid testing was simultaneously performed for the control group as well. For statistical data analysis, the SPSS software Ver. 16 and the statistical paired-t test were used. The first phase of periodontal therapy in cases led to reduced levels of triglycerides and cholesterol compared to the situation before treatment (P < 0.05). In this group of patients, LDL levels decreased and HDL levels increased; however, these changes compared to pre-treatment values were not significant (P > 0.05). In the control group, the mean levels of triglycerides, cholesterol and its components showed no differences at the end of the study compared to the values before the treatment (P > 0.05). Based on the findings in this study, it can be concluded that the first phase of periodontal treatments associated with oral hygiene can reduce periodontal infection, and thus leads to reduced serum levels of cholesterol and triglycerides. Since hyperlipidemia can increase the risk of developing arteriosclerosis and cardiovascular diseases, control of localized infections such as periodontal infections is important.

Keywords: Phase I, Periodontal, Generalized Periodontitis

INTRODUCTION
Periodontitis is a common disease that its clinical symptoms are usually seen in midlife ages. Periodontitis is a chronic inflammation and tissue-destructive disease that causes dental attachment apparatus, and finally their loss. The severe form of the disease is seen in about 10-15% of the adult population, while 35% of patients show mild or moderate symptoms (Buhlin et al., 2003).

Some studies show that people with periodontitis are more at risk of cardiovascular diseases, coronary artery disease (Buhlin et al., 2003; Al Zahrani et al., 2006), preterm labor and premature birth (Mustapha et al., 2007; Dasanayake, 1998), diabetes (Offenbacher et al., 1996; Shi et al., 2006) and hyperlipidemia (Losche et al., 2000; Cutler et al., 1999; Banihashemrad et al., 2008). Recent studies have also shown that periodontal infections are related to atherosclerosis and heart attacks. Hypercholesterolemia, and in
particular, increased serum concentrations of LDL and triglycerides are the major risk factors of atherosclerosis (Valentaviciene et al., 2006; Bahekar et al., 2007). Experiments on animals have also shown the association between periodontitis and hyperlipidemia (Matthews et al., 2008). It was also found that there is a relationship between periodontal damage rate and blood cholesterol concentrations (Ebersole et al., 1999). In recent years, several studies have been conducted by the American Heart Association on the relationship between periodontal disease and atherosclerotic vascular diseases (Lockhart et al., 2012). One of the theories regarding the relationship between periodontitis and atherosclerotic disease is based on the inflammatory responses, which are started topically or systemically by the bacteria involved in periodontitis and leads to the formation or progression of atherosclerotic lesions. Formation of such lesions can be initiated by inflammatory stimuli such as systemic inflammatory cytokines produced topically or chemotactic factors causing changes in the endothelium, such as up-regulation of adhesion molecules. These changes can cause interference between leukocytes, and thus leads to their migration to the intimal layer of the vessels. Fatty streaks containing LDL inside macrophages and dendritic cells within the intimal layer can cause the onset or progression of the inflammatory responses. Endothelium up-regulation leads to the release of other chemotactic cytokines such as chemotactic monocyte 1 protein, which attracts monocytes or other cells as well as the bacteria into the lesions (Schenkein and Loos, 2013). It was shown in one study that Porphyromonas gingivalis - the main pathogen of periodontitis - directly attacks cardiovascular cells (Buhlin et al., 2003). Given the association between periodontal infections and systemic diseases such as cardiovascular diseases, a question also arises whether periodontal treatments and reduction of infection have any influence on the patient's systemic status improvement? In this regard, some studies show the positive effects of periodontal treatments such as phase 1 treatments on systemic status improvement. In a study, Mercanoglu et al., (2004) evaluated the effect of phase 1 periodontal treatments on coronary endothelial dysfunction in patients with chronic periodontitis. In this study, 28 patients with chronic periodontitis and without atherosclerosis were considered as the case group, while 26 healthy patients were considered as controls. In both groups, the response to reactive hyperemia or endothelium - dependent dilation (EDD) and sublingual nitroglycerin or endothelium - independent dilation (EID) were measured before and after Phase I periodontal treatments. Their results showed that EDD and EID in patients with chronic periodontitis have significantly reduced; endothelial functioning has problems in these patients. These complications improved more following the phase I periodontal treatments (Mercanoglu et al., 2004).

MATERIALS AND METHODS
In this case-control study, 40 patients with generalized moderate periodontitis, who had referred to a dental clinic during a six-month period (from September 23, 2013 to March 20, 2014), were selected (20 subjects as the intervention group and 20 subjects as the control group). After a thorough explanation about the type of research, an informed and written consent was obtained from all patients. The study inclusion criteria were (1) having moderate periodontitis, (2) absence of systemic diseases, (3) not using cigarettes and other drugs, (4) mean age of 30-50 years old, and (5) having at least 20 teeth. The study exclusion criteria were as:
1. Periodontal treatment during the last 6 months
2. History of hyperlipidemia, cardiovascular diseases, diabetes, hypertension
3. Use of antibiotics during the past three months
For all patients before periodontal treatment, the following were measured and recorded: Plaque index, probing depth, bleeding on probing, analysis of adhesion as well as total cholesterol levels, high density cholesterol (HDL) levels and low-density cholesterol (LDL) levels. Then, the intervention group received periodontal treatment and oral hygiene instruction. Approximately 1 week after periodontal treatment, blood lipids levels were again measured. Lipid testing was simultaneously performed for the control group as well.
Lipid testing was simultaneously performed for the control group as well (This group was chosen among persons whose treatments were not followed for some reasons or they did not want to do the treatments). It should also be noted that the patients were evaluated in this study in an unknown single-blind approach. The study methodology was analytical and stochastic, and confounding factors were controlled. Periodontal therapies were done based on the disease type and the number of sessions needed. Blood tests for patients were determined in a certain and accredited laboratory.

RESULTS AND DISCUSSION

Results
In this study, 40 patients were examined (20 cases and 20 controls). The mean age and gender separation of participants were similar in the two groups. The paired t-test showed that periodontal treatment in the case group reduced the levels of triglycerides and cholesterol than the time before treatment (P < 0.05) (Table (1)). In this group of patients, LDL levels decreased and HDL levels increased, but these changes were not significant compared to the pre-treatment values (P > 0.05) (Table (1)).

In the control group, the mean levels of triglycerides, cholesterol and its components at the end of the study showed no difference compared to the pre-treatment values (P > 0.05) (Table (2)).

Table 1: Comparison of blood lipids levels in the case group patients before and after periodontal treatment

<table>
<thead>
<tr>
<th>P- Vaule</th>
<th>Mean ± SD</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/006</td>
<td>194/02 ± 21/40</td>
<td>Cholesterol before treatment</td>
</tr>
<tr>
<td></td>
<td>160/81 ± 19/16</td>
<td>Cholesterol after treatment</td>
</tr>
<tr>
<td>0/001</td>
<td>155/2 ± 37/16</td>
<td>TG before treatment</td>
</tr>
<tr>
<td></td>
<td>119/04 ± 29/14</td>
<td>TG after treatment</td>
</tr>
<tr>
<td>0/216</td>
<td>117/48 ± 23/56</td>
<td>LDL before treatment</td>
</tr>
<tr>
<td></td>
<td>112/06 ± 30/18</td>
<td>LDL after treatment</td>
</tr>
<tr>
<td>0/466</td>
<td>47/19 ± 10/18</td>
<td>HDL before treatment</td>
</tr>
<tr>
<td></td>
<td>50/01 ± 10/23</td>
<td>HDL after treatment</td>
</tr>
</tbody>
</table>

Table 2: Comparison of blood lipids levels in the control group before and after the study

<table>
<thead>
<tr>
<th>P- Vaule</th>
<th>Mean ± SD</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/513</td>
<td>201/16 ± 39/02</td>
<td>Cholesterol before treatment</td>
</tr>
<tr>
<td></td>
<td>203/14 ± 40/16</td>
<td>Cholesterol after treatment</td>
</tr>
<tr>
<td>0/312</td>
<td>149/01 ± 37/14</td>
<td>TG before treatment</td>
</tr>
<tr>
<td></td>
<td>113/17 ± 22/14</td>
<td>TG after treatment</td>
</tr>
<tr>
<td>0/914</td>
<td>114/09 ± 30/12</td>
<td>LDL before treatment</td>
</tr>
<tr>
<td></td>
<td>49/06 ± 11/14</td>
<td>LDL after treatment</td>
</tr>
<tr>
<td>0/716</td>
<td>47/78 ± 10/13</td>
<td>HDL before treatment</td>
</tr>
<tr>
<td></td>
<td>50/11 ± 10/23</td>
<td>HDL after treatment</td>
</tr>
</tbody>
</table>

Discussion
According to the statistics presented in the tables, the mean levels of triglycerides, cholesterol, LDL in the case group dropped after periodontal treatments. The reduction rates were significant regarding cholesterol and triglycerides, but not significant in the case of LDL. In this group, the mean values of HDL increased after treatment, which was not statistically significant. In the control group, the lipid profile test results had no differences before and after the study.

Due to the reduced levels of blood lipids in the case group with completed periodontal treatments compared with the control group with no significant change in the above values, one can suggests that the
mean serum lipids levels, especially in the case of triglycerides and cholesterol showed a noticeable difference between the two groups. The difference well demonstrates the claimed subject matter. The results of this study are consistent with other studies (Mercanoglu et al., 2004; Pussinen et al., 2004; Pussinen et al., 2004; Losche et al., 2005).

It has been emphasized in several papers the adult periodontitis can be considered as a risk factor for various systemic illnesses, including coronary heart disease, premature birth and low birth weight infants (Losche et al., 2005; D’Aiuto et al., 2005).

As suggested, this is due to chronic and periodic bacteremia and subclinical endotoxemia occurring in patients with adult periodontitis (Periodontium serves as a reservoir to endotoxin, and cytokines and lipid mediators of other areas in the body) (D’Aiuto et al., 2005). The study of Feingold et al., (1992) showed that administration of low-dose endotoxin can cause hypertriglyceridemia. They suggested that this reaction occurs in local infections such as periodontal diseases, which are exposed chronically to microorganisms and lipopolysaccharides (Feingold et al., 1992). In another study, Memon et al., (2000) showed that periodontitis caused by bacterial lipopolysaccharide in mice increases high levels of triglycerides (Memon et al., 2000). In another study by Doxey et al., (1998) similar results have been reported (Doxey et al., 1998).

Another hypothesis suggest that dietary changes following reduced chewing ability caused increased take of high-calorie foods with high levels of carbohydrates and fats, which may have an influence on this relationship (DeStefano et al., 1993; Janket et al., 2001; Mattila et al., 2000).

It should be noted that the only difference between the current study and previous studies is an increase in serum HDL levels in the case group after performing periodontal treatments; however, this increase is not statistically significant.

Conclusion

Based on the findings in this study, it can be concluded that the phase 1 periodontal treatments associated with oral hygiene can reduce periodontal infection, and thus leading to reduced serum cholesterol and triglycerides concentrations. The results showed that there is a significant association between periodontal disease treatment and reduced blood lipids levels. The possible mechanism is the association between bacterial endotoxin placing LPS in the systemic circulation, and then stimulated secretion of inflammatory cytokines and the resulting changes in lipid metabolism and developing hyperlipidemia. Since hyperlipidemia increases the risk of arteriosclerosis and cardiovascular diseases, controlling the local infections such as periodontal infections is important.

REFERENCES

Research Article

